Controlled restart in differential evolution applied to CEC2014 benchmark functions

A controlled restart in differential evolution (DE) is proposed. The conditions of restart are derived from the difference of maximum and minimum values of the objective function and the estimated maximum distance among the points in the current population. The restart is applied in a competitive-adaptation variant of DE. This DE algorithm with the controlled restart is used in the solution of the benchmark problems defined for the CEC 2014 competition. Two control parameters of restart are set up intuitively. The population size, which is the only control parameter of competitive-adaptation variant of DE, is set up to the values based on a short preliminary experimentation.

[1]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[2]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[3]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[4]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[5]  M. M. Ali,et al.  A numerical study of some modified differential evolution algorithms , 2006, Eur. J. Oper. Res..

[6]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[7]  Josef Tvrdík Adaptation in differential evolution: A numerical comparison , 2009, Appl. Soft Comput..

[8]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[9]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[10]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[11]  J. Tvrdík Self-adaptive Variants of Differential Evolution with Exponential Crossover , 2009 .

[12]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[13]  Josef Tvrdík,et al.  Competitive differential evolution for constrained problems , 2010, IEEE Congress on Evolutionary Computation.

[14]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[15]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[16]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[17]  Janez Brest,et al.  Real Parameter Single Objective Optimization using self-adaptive differential evolution algorithm with more strategies , 2013, 2013 IEEE Congress on Evolutionary Computation.

[18]  Leandro dos Santos Coelho,et al.  Population's variance-based Adaptive Differential Evolution for real parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[19]  Ilpo Poikolainen,et al.  Differential Evolution with Concurrent Fitness Based Local Search , 2013, 2013 IEEE Congress on Evolutionary Computation.

[20]  Gexiang Zhang,et al.  Super-fit Multicriteria Adaptive Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[21]  Petr Bujok,et al.  Adaptive Variants of Differential Evolution: Towards Control-Parameter-Free Optimizers , 2013, Handbook of Optimization.

[22]  Athanasios V. Vasilakos,et al.  Teaching and learning best Differential Evoltuion with self adaptation for real parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[23]  Tapabrata Ray,et al.  Differential evolution with automatic parameter configuration for solving the CEC2013 competition on Real-Parameter Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[24]  Josef Tvrdík,et al.  Competitive differential evolution applied to CEC 2013 problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[25]  Alex S. Fukunaga,et al.  Evaluating the performance of SHADE on CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[26]  Janez Brest,et al.  Structured Population Size Reduction Differential Evolution with Multiple Mutation Strategies on CEC 2013 real parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[27]  Ruhul A. Sarker,et al.  Differential Evolution with automatic population injection scheme for constrained problems , 2013, 2013 IEEE Symposium on Differential Evolution (SDE).

[28]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .