Review of fuzzy system models with an emphasis on fuzzy functions

Fuzzy system modelling (FSM) is one of the most prominent tools that can be used to identify the behaviour of highly non-linear systems with uncertainty. In the past, FSM techniques utilized Type 1 fuzzy sets in order to capture the uncertainty in the system. However, since Type 1 fuzzy sets express the belongingness of a crisp value x' of an input variable x in a fuzzy set A by a crisp membership value μA(x'), they cannot fully capture the uncertainties associated with higher-order imprecisions in identifying membership functions. In the future, we are likely to observe higher types of fuzzy sets, such as Type 2 fuzzy sets. The use of Type 2 fuzzy sets and linguistic logical connectives has drawn a considerable amount of attention in the realm of FSM in the last two decades. In this paper, we first review Type 1 fuzzy system models known as Zadeh, Takagi— Sugeno and Turksen models; then we review potentially future realizations of Type 2 fuzzy systems again under the headings of Zadeh, Takagi—Sugeno and ...

[1]  Özge Uncu,et al.  A novel feature selection approach: Combining feature wrappers and filters , 2007, Inf. Sci..

[2]  I. Turksen Type 2 representation and reasoning for CWW , 2002 .

[3]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[4]  I. Turksen Fuzzy normal forms , 1995 .

[5]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[6]  Hisao Ishibuchi,et al.  Exponential possibility regression analysis , 1995 .

[7]  Mu-Song Chen,et al.  Fuzzy clustering analysis for optimizing fuzzy membership functions , 1999, Fuzzy Sets Syst..

[8]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[9]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[10]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[11]  I. Turksen Interval valued fuzzy sets based on normal forms , 1986 .

[12]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[13]  M. Sugeno,et al.  A review and comparison of six reasoning methods , 1993 .

[14]  Qihao Chen,et al.  On fuzzy-valued fuzzy reasoning , 2000, Fuzzy Sets Syst..

[15]  Witold Pedrycz,et al.  Evaluation of fuzzy linear regression models , 1991 .

[16]  A. Celmins Least squares model fitting to fuzzy vector data , 1987 .

[17]  Mustafa Demirci Fuzzy functions and their fundamental properties , 1999, Fuzzy Sets Syst..

[18]  R. John,et al.  An adaptive type-2 fuzzy system for learning linguistic membership grades , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[19]  A. Celmins Multidimensional least-squares fitting of fuzzy models , 1987 .

[20]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[21]  I. Burhan Türksen,et al.  Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters , 2007, IEEE Transactions on Fuzzy Systems.

[22]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[23]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[24]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems: type-reduction , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[25]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[26]  K. Shulman,et al.  Fuzzy logic pharmacokinetic modeling: Application to lithium concentration prediction , 1997, Clinical pharmacology and therapeutics.

[27]  N. N. Karnik,et al.  Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[28]  I. Burhan Türksen,et al.  Fuzzy functions with LSE , 2008, Appl. Soft Comput..

[29]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[30]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[31]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[32]  Jordi Recasens,et al.  Fuzzy groups, fuzzy functions and fuzzy equivalence relations , 2004, Fuzzy Sets Syst..

[33]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Ping-Teng Chang,et al.  Fuzzy linear regression with spreads unrestricted in sign , 1994 .

[35]  I. Burhan Türksen,et al.  Fuzzy functions with support vector machines , 2007, Inf. Sci..

[36]  Janusz T. Starczewski,et al.  Connectionist Structures of Type 2 Fuzzy Inference Systems , 2001, PPAM.

[37]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[38]  Andrew A. Goldenberg,et al.  Development of a systematic methodology of fuzzy logic modeling , 1998, IEEE Trans. Fuzzy Syst..

[39]  Mustafa Demirci,et al.  Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations, part I: fuzzy functions and their applications , 2003, Int. J. Gen. Syst..

[40]  I. Turksen Interval-valued fuzzy sets and “compensatory AND” , 1992 .

[41]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[42]  Robert Babuska,et al.  Constructing fuzzy models by product space clustering , 1997 .

[43]  D. Rutkowska,et al.  Type 2 fuzzy neural networks: an interpretation based on fuzzy inference neural networks with fuzzy parameters , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).