Fault Tolerant Control for EMS systems with sensor failure

The paper presents a method to recover the performance of an EMS (Electromagnetic suspension) under faulty air gap measurement. The controller is a combination of classical control loops, a Kalman estimator and analytical redundancy (for the air gap signal). In case of a faulty air gap sensor the air gap signal is recovered using the Kalman filter and analytical redundancy. Simulations verify the proposed sensor Fault Tolerant Control (FTC) method for the EMS system.

[1]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[2]  Ron J. Patton,et al.  What is Fault-Tolerant Control? , 2000 .

[3]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[4]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[5]  Roger M. Goodall,et al.  Optimised sensor configurations for a Maglev suspension , 2008 .

[6]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[7]  Zhiqiang Long,et al.  Fault Tolerant Control Research for High-Speed Maglev System with Sensor Failure , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[8]  J. Pearson,et al.  MAGLEV suspensions - A sensor optimisation framework , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[9]  Roger M. Goodall,et al.  Dynamics and control requirements for EMS Maglev suspensions , 2004 .

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  Roger M. Goodall Electromagnetic suspension control without airgap measurement , 1989 .

[12]  Hong-Ju Kim,et al.  Design of a fault-tolerant levitation controller for Magnetic Levitation vehicle , 2007, 2007 International Conference on Electrical Machines and Systems (ICEMS).

[13]  Zhiqiang Long,et al.  Fault-tolerant Control for Maglev Suspension System Based on Simultaneous Stabilization , 2007, 2007 IEEE International Conference on Automation and Logistics.

[14]  Roger M. Goodall Dynamic Characteristics in the Design of Maglev Suspensions , 1994 .

[15]  Hyung-Woo Lee,et al.  Review of maglev train technologies , 2006, IEEE Transactions on Magnetics.

[16]  Roger M. Goodall,et al.  Generalised Design Models For EMS Maglev , 2008 .

[17]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[18]  Roger M. Goodall On the robustness of flux feedback control for electro-magnetic Maglev controllers , 2000 .

[19]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[20]  E. A. Woods,et al.  Fault detection, supervision and safety for technical processes , 1993 .

[21]  Roger M. Goodall,et al.  Sensor Optimisation via H∞ Applied to a MAGLEV Suspension System , 2008 .

[22]  Zeung nam Bien,et al.  Design and implementation of a fault tolerant controller for EMS systems , 2005 .