A Construction of Multiresolution Analysis on Interval
暂无分享,去创建一个
[1] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[2] C. Micchelli,et al. Stationary Subdivision , 1991 .
[3] Pierre Gilles Lemarié-Rieusset,et al. Support des fonctions de base dans une analyse multi-résolution , 1991 .
[4] C. Micchelli,et al. On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.
[5] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[6] R. DeVore,et al. Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .
[7] R. DeVore,et al. Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .
[8] G. Plonka. Approximation order provided by refinable function vectors , 1997 .
[9] Algebraic properties of subdivision operators with matrix mask and their applications , 1999 .
[10] R. DeVore,et al. Multiscale decompositions on bounded domains , 2000 .
[11] S. Riemenschneider,et al. Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .