Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode

[1]  Andreas Jossen,et al.  Calculation of the state of safety (SOS) for lithium ion batteries , 2016 .

[2]  Henk Jan Bergveld,et al.  A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries , 2016 .

[3]  Jie Liu,et al.  Simulation and experimental study on lithium ion battery short circuit , 2016 .

[4]  Shanhai Ge,et al.  Reaction temperature sensing (RTS)-based control for Li-ion battery safety , 2015, Scientific Reports.

[5]  Jianqiu Li,et al.  Internal short circuit detection for battery pack using equivalent parameter and consistency method , 2015 .

[6]  Depeng Kong,et al.  Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test , 2015 .

[7]  Christopher J. Orendorff,et al.  Failure propagation in multi-cell lithium ion batteries , 2015 .

[8]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[9]  Xuan Liu,et al.  Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery , 2015 .

[10]  Xiongwen Zhang,et al.  Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements , 2015 .

[11]  Jianqiu Li,et al.  Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 composite cathode , 2015 .

[12]  Xuning Feng,et al.  Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module , 2015 .

[13]  Jinhua Sun,et al.  The combustion behavior of large scale lithium titanate battery , 2015, Scientific Reports.

[14]  Minggao Ouyang,et al.  Characterization of large format lithium ion battery exposed to extremely high temperature , 2014 .

[15]  Jinhua Sun,et al.  Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method , 2014 .

[16]  Richard Baltensperger,et al.  Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN , 2014, Journal of Thermal Analysis and Calorimetry.

[17]  Minggao Ouyang,et al.  Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry , 2014 .

[18]  H. Wiemhöfer,et al.  A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry , 2014 .

[19]  Christopher J. Orendorff,et al.  Thermal and Overcharge Abuse Analysis of a Redox Shuttle for Overcharge Protection of LiFePO4 , 2014 .

[20]  Christopher J. Orendorff,et al.  Evaluation of mechanical abuse techniques in lithium ion batteries , 2014 .

[21]  Keizoh Honda,et al.  High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications , 2013 .

[22]  Chi-Min Shu,et al.  Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology , 2012 .

[23]  Sylvie Grugeon,et al.  Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis , 2012 .

[24]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[25]  Diego Lisbona,et al.  A review of hazards associated with primary lithium and lithium-ion batteries , 2011 .

[26]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[27]  Miroslav Krstic,et al.  PDE model for thermal dynamics of a large Li-ion battery pack , 2011, Proceedings of the 2011 American Control Conference.

[28]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[29]  Qingsong Wang,et al.  Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery. , 2009, Journal of hazardous materials.

[30]  Hyunsu Cho,et al.  Nanoscale Silver-Based Al-Doped ZnO Multilayer Transparent-Conductive Oxide Films , 2009 .

[31]  Yasuhiro Harada,et al.  Electrochemical Kinetics and Safety of 2-Volt Class Li-Ion Battery System Using Lithium Titanium Oxide Anode , 2009 .

[32]  Sylvie Grugeon,et al.  Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries , 2008 .

[33]  E. Peter Roth,et al.  Abuse Response of 18650 Li-Ion Cells with Different Cathodes Using EC:EMC/LiPF6 and EC:PC:DMC/LiPF6 Electrolytes , 2008 .

[34]  M. Armand,et al.  Building better batteries , 2008, Nature.

[35]  Seung-wook Eom,et al.  Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test , 2008 .

[36]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[37]  Tasneem Abbasi,et al.  The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. , 2007, Journal of hazardous materials.

[38]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[39]  D. Abraham,et al.  Diagnostic examination of thermally abused high-power lithium-ion cells , 2006 .

[40]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[41]  Jinhua Sun,et al.  Catalytic effects of inorganic acids on the decomposition of ammonium nitrate. , 2005, Journal of hazardous materials.

[42]  H. X. Yang,et al.  A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries , 2004 .

[43]  E. Roth,et al.  DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders , 2004 .

[44]  E. Roth,et al.  Thermal abuse performance of high-power 18650 Li-ion cells , 2004 .

[45]  Jin-hua Sun,et al.  A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry , 2001 .

[46]  E. Takeuchi,et al.  Abuse Testing of Lithium-Ion Batteries: Characterization of the Overcharge Reaction of LiCoO2/Graphite Cells , 2001 .

[47]  J. Dahn,et al.  Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells , 2001 .

[48]  O. Hougen Diffusion and Heat Exchange in Chemical Kinetics. , 1956 .

[49]  Xuning Feng,et al.  Online internal short circuit detection for a large format lithium ion battery , 2016 .

[50]  Carlos F. Lopez,et al.  Characterization of Lithium-Ion Battery Thermal Abuse Behavior Using Experimental and Computational Analysis , 2015 .

[51]  Partha P. Mukherjee,et al.  Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules , 2015 .

[52]  M. Gulbinska,et al.  Lithium-ion Cell and Battery Safety , 2014 .

[53]  F. Larsson,et al.  Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells , 2014 .

[54]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[55]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[56]  E. Roth,et al.  Simulation of abuse tolerance of lithium-ion battery packs , 2007 .

[57]  H. G. Fisher,et al.  Determination of self-accelerating decomposition temperatures for self-reactive substances , 1993 .

[58]  N. N. Semenov,et al.  Some problems in chemical kinetics and reactivity , 1958 .