Bagging constrained equity premium predictors

The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity of the regression coefficient and positivity of the forecast. Bagging constrained estimators can have smaller asymptotic mean-squared prediction errors than forecasts from a restricted model without bagging. Monte Carlo simulations show that forecast gains can be achieved in realistic sample sizes for the stock return problem. In an empirical application using the data set of Campbell, J., and S. Thompson (2008): “Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?”, Review of Financial Studies 21, 1511-1531, we show that we can improve the forecast performance further by smoothing the restriction through bagging.

[1]  Exchange Rates and Fundamentals , 2005 .

[2]  Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average? , 2005 .

[3]  Marcelo C. Medeiros,et al.  Forecasting realized volatility models:the benefits of bagging and nonlinear specifications , 2007 .

[4]  Mark W. Watson,et al.  Generalized Shrinkage Methods for Forecasting Using Many Predictors , 2012 .

[5]  Graham Elliott,et al.  Inference in Models with Nearly Integrated Regressors , 1995, Econometric Theory.

[6]  R. Shiller,et al.  Stock Prices, Earnings and Expected Dividends , 1988 .

[7]  Min Zhu Jackknife for bias reduction in predictive regressions , 2012 .

[8]  A. Timmermann,et al.  Predictability of Stock Returns: Robustness and Economic Significance , 1995 .

[9]  Rossen Valkanov Long-horizon regressions: theoretical results and applications , 2003 .

[10]  S. B. Thompson,et al.  Cross-sectional forecasts of the equity premium , 2006 .

[11]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[12]  Alexander W. Butler,et al.  Can Managers Forecast Aggregate Market Returns? , 2003 .

[13]  W. Torous,et al.  On Predicting Stock Returns with Nearly Integrated Explanatory Variables , 2004 .

[14]  P. Bossaerts,et al.  Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn? , 1999 .

[15]  R. Stambaugh,et al.  Predictive Regressions , 1999 .

[16]  A. Buja,et al.  OBSERVATIONS ON BAGGING , 2006 .

[17]  E. Fama Stock Returns, Real Activity, Inflation, and Money , 1981 .

[18]  Yang Yang,et al.  Bagging binary and quantile predictors for time series , 2006 .

[19]  R. Shiller,et al.  The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors , 1986 .

[20]  Jon Faust,et al.  Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset , 2007 .

[21]  J. Lewellen,et al.  Predicting Returns with Financial Ratios , 2002 .

[22]  J. Friedman,et al.  On bagging and nonlinear estimation , 2007 .

[23]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .

[24]  Guofu Zhou,et al.  Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy , 2009 .

[25]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[26]  J. Campbell Stock Returns and the Term Structure , 1985 .

[27]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast? , 2006 .

[28]  E. Fama,et al.  BUSINESS CONDITIONS AND EXPECTED RETURNS ON STOCKS AND BONDS , 1989 .

[29]  Michael S. Rozeff Dividend yields are equity risk premiums , 1984 .

[30]  Allan Timmermann,et al.  Elusive Return Predictability , 2008 .

[31]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[32]  Donald B. Keim,et al.  Predicting returns in the stock and bond markets , 1986 .

[33]  R. Shiller,et al.  Valuation Ratios and the Long-Run Stock Market Outlook , 1998 .

[34]  Tae-Hwy Lee,et al.  To Combine Forecasts or to Combine Information? , 2010 .

[35]  P. Hall,et al.  ESTIMATING A PARAMETER WHEN IT IS KNOWN THAT THE PARAMETER EXCEEDS A GIVEN VALUE , 2009 .

[36]  David C. Wheelock,et al.  Can the Term Spread Predict Output Growth and Recessions? A Survey of the Literature , 2009 .

[37]  Timo Teräsvirta,et al.  Forecasting economic variables with nonlinear models , 2005 .

[38]  Jeffrey Wurgler,et al.  The Equity Share in New Issues and Aggregate Stock Returns , 1999 .

[39]  P. Bühlmann,et al.  Analyzing Bagging , 2001 .

[40]  Andrew Ang,et al.  Stock Return Predictability: Is it There? , 2001 .

[41]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[42]  Sergei Sarkissian,et al.  Spurious Regressions in Financial Economics? , 2002 .

[43]  Arturo Estrella,et al.  The term structure as a predictor of real economic activity , 1991 .

[44]  R. Koenker,et al.  Asymptotic Theory of Least Absolute Error Regression , 1978 .

[45]  Todd E. Clark,et al.  Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis , 2004 .

[46]  N. Mark,et al.  Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability , 1995 .

[47]  N. Barberis Investing for the Long Run When Returns are Predictable , 2000 .

[48]  Lutz Kilian,et al.  Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions? , 1999 .

[49]  Lutz Kilian,et al.  How Useful is Bagging in Forecasting Economic Time Series? A Case Study of Us CPI Inflation , 2005 .

[50]  A. Deaton Consumption , Aggregate Wealth , and Expected Stock Returns , 2008 .

[51]  C. Nelson,et al.  Predictable Stock Returns: The Role of Small Sample Bias , 1993 .

[52]  A. Timmermann,et al.  Market timing and return prediction under model instability , 2002 .

[53]  E. Fama,et al.  Dividend yields and expected stock returns , 1988 .

[54]  Bernd Fitzenberger,et al.  The moving blocks bootstrap and robust inference for linear least squares and quantile regressions , 1998 .

[55]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[56]  Marcelo C. Medeiros,et al.  Modeling and Forecasting Short-term Interest Rates: The Benefits of Smooth Regimes, Macroeconomic Variables, and Bagging , 2011 .

[57]  Michael W. McCracken,et al.  Testing the Economic Value of Asset Return Predictability , 2012 .

[58]  G. William Schwert,et al.  Asset returns and inflation , 1977 .

[59]  Todd E. Clark,et al.  Tests of Equal Forecast Accuracy and Encompassing for Nested Models , 1999 .

[60]  David E. Rapach,et al.  Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth , 2010 .

[61]  F. Douglas Foster,et al.  Assessing goodness-of-fit of asset pricing models: The distribution of the maximal R2 , 1997 .