Partly melted DNA conformations obtained with a probability peak finding method.

Peaks in the probabilities of loops or bubbles, helical segments, and unzipping ends in melting DNA are found in this article using a peak finding method that maps the hierarchical structure of certain energy landscapes. The peaks indicate the alternative conformations that coexist in equilibrium and the range of their fluctuations. This yields a representation of the conformational ensemble at a given temperature, which is illustrated in a single diagram called a stitch profile. This article describes the methodology and discusses stitch profiles vs the ordinary probability profiles using the phage lambda genome as an example.

[1]  M. Prentiss,et al.  DNA unzipped under a constant force exhibits multiple metastable intermediates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Michel Peyrard Nonlinear dynamics and statistical physics of DNA , 2004 .

[3]  L. Lerman,et al.  Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. , 1987, Methods in enzymology.

[4]  DNA melting profiles from a matrix method , 2004, Biopolymers.

[5]  Sibani,et al.  Diffusion in hierarchies. , 1988, Physical review. A, General physics.

[6]  Edouard Yeramian,et al.  Physics-based gene identification: proof of concept for Plasmodium falciparum , 2002, Bioinform..

[7]  Henri Buc,et al.  An optimal formulation of the matrix method in statistical mechanics of one‐dimensional interacting units: Efficient iterative algorithmic procedures , 1990 .

[8]  Fang Liu,et al.  Speed-up of DNA melting algorithm with complete nearest neighbor properties. , 2003, Biopolymers.

[9]  G. Steger,et al.  Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. , 1994, Nucleic acids research.

[10]  A Suyama,et al.  Stability distribution in the phage lambda-DNA double helix: a correlation between physical and genetic structure. , 1984, Journal of biomolecular structure & dynamics.

[11]  Eivind Tøstesen,et al.  RNA Folding Transitions and Cooperativity , 2001 .

[12]  Louis Jones,et al.  GeneFizz: a web tool to compare genetic (coding/non-coding) and physical (helix/coil) segmentations of DNA sequences. Gene discovery and evolutionary perspectives , 2003, Nucleic Acids Res..

[13]  Kenneth A. Marx,et al.  Statistical mechanical simulation of polymeric DNA melting with MELTSIM , 1999, Bioinform..

[14]  M. Zuker,et al.  Prediction of hybridization and melting for double-stranded nucleic acids. , 2004, Biophysical journal.

[15]  R. Blossey,et al.  Reparametrizing the loop entropy weights: effect on DNA melting curves. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Bishop,et al.  Entropy-driven DNA denaturation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Grégoire Altan-Bonnet,et al.  Bubble dynamics in double-stranded DNA. , 2003, Physical review letters.

[18]  Chengpeng Bi,et al.  WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. , 2004, Bioinformatics.

[19]  D. Poland,et al.  Recursion relation generation of probability profiles for specific‐sequence macromolecules with long‐range correlations , 1974, Biopolymers.

[20]  Douglas Poland,et al.  Theory of helix-coil transitions in biopolymers , 1970 .

[21]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[22]  E. Yeramian,et al.  Genes and the physics of the DNA double-helix. , 2000, Gene.

[23]  Yan Zeng,et al.  Length and statistical weight of bubbles in DNA melting. , 2003, Physical review letters.

[24]  A. Buhot,et al.  Sensitivity, specificity, and the hybridization isotherms of DNA chips. , 2003, Biophysical journal.

[25]  A. T. Sumner Chromosomes: Organization and Function , 2003 .

[26]  E. Marinari,et al.  Localization of denaturation bubbles in random DNA sequences , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Alan R Bishop,et al.  DNA dynamically directs its own transcription initiation. , 2004, Nucleic acids research.

[28]  Shi-jie Chen,et al.  Predicting free energy landscapes for complexes of double-stranded chain molecules , 2001 .

[29]  R. Ellis,et al.  Macromolecular crowding: an important but neglected aspect of the intracellular environment. , 2001 .

[30]  R. Metzler,et al.  Bubble dynamics in DNA , 2003, cond-mat/0305049.

[31]  Newman,et al.  Broken ergodicity and the geometry of rugged landscapes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  E. Yeramian,et al.  The physics of DNA and the annotation of the Plasmodium falciparum genome. , 2000, Gene.

[33]  R. Blake,et al.  Thermal stability of DNA. , 1998, Nucleic acids research.

[34]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .