Graphical Explanation in Belief Networks

Abstract Belief networks provide an important bridge between statistical modeling and expert systems. This article presents methods for visualizing probabilistic “evidence flows” in belief networks, thereby enabling belief networks to explain their behavior. Building on earlier research on explanation in expert systems, we present a hierarchy of explanations, ranging from simple colorings to detailed displays. Our approach complements parallel work on textual explanations in belief networks. Graphical-Belief, Mathsoft Inc.'s belief network software, implements the methods.

[1]  Barr and Feigenbaum Edward A. Avron,et al.  The Handbook of Artificial Intelligence , 1981 .

[2]  Krzysztof Mosurski,et al.  An extension of the results of Asmussen and Edwards on collapsibility in contingency tables , 1990 .

[3]  G F Cooper,et al.  An evaluation of explanations of probabilistic inference. , 1993, Computers and biomedical research, an international journal.

[4]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[5]  D G KHADZHIEV [A GIANT URETERAL CALCULUS]. , 1964, Urologiia.

[6]  W. Kruskal Relative Importance by Averaging Over Orderings , 1987 .

[7]  Russell G. Almond,et al.  On Test Selection Strategies for Belief Networks , 1995, AISTATS.

[8]  J. Woodward,et al.  Scientific Explanation and the Causal Structure of the World , 1988 .

[9]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[10]  William R. Swartout,et al.  XPLAIN: A System for Creating and Explaining Expert Consulting Programs , 1983, Artif. Intell..

[11]  Steen Andreassen,et al.  MUNIN - A Causal Probabilistic Network for Interpretation of Electromyographic Findings , 1987, IJCAI.

[12]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[13]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[14]  Henri Theil,et al.  Information-Theoretic Measures of Fit for Univariate and Multivariate Linear Regressions , 1988 .

[15]  D. Schum,et al.  Formal and empirical research on cascaded inference in jurisprudence. , 1982 .

[16]  Gregory F. Cooper,et al.  Current research directions in the development of expert systems based on belief networks , 1989 .

[17]  Carlo Batini,et al.  Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..

[18]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[19]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[20]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[21]  J. Lingeman,et al.  Management of upper ureteral calculi with extracorporeal shock wave lithotripsy. , 1987, The Journal of urology.

[22]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[23]  Alicia Konsella Current Research Directions , 1992 .

[24]  Bas C. van Fraassen,et al.  The Scientific Image , 1980 .

[25]  Eric Horvitz,et al.  An Approximate Nonmyopic Computation for Value of Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Marek J. Druzdzel Qualitative Verbal Explanations in Bayesian Belief Networks , 1996 .

[27]  Russell G. Almond Graphical belief modeling , 1995 .

[28]  David A. Schum,et al.  Probability and the Processes of Discovery, Proof, and Choice , 1988 .

[29]  Richard D. Coyne,et al.  Design Reasoning Without Explanations , 1990, AI Mag..

[30]  D. J. Spiegelhalter,et al.  Statistical and Knowledge‐Based Approaches to Clinical Decision‐Support Systems, with an Application in Gastroenterology , 1984 .

[31]  D. Edwards,et al.  A fast procedure for model search in multidimensional contingency tables , 1985 .

[32]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[33]  David J. Spiegelhalter,et al.  Probabilistic Reasoning in Predictive Expert Systems , 1985, UAI.

[34]  I. J. Good,et al.  Explicativity: a mathematical theory of explanation with statistical applications , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  Morton M. Mayers,et al.  A Giant Ureteral Calculus (Weight: 286 Grams) , 1940 .

[36]  A. P. Dawid,et al.  Independence properties of directed Markov fields. Networks, 20, 491-505 , 1990 .

[37]  I. Good A CAUSAL CALCULUS (I)* , 1961, The British Journal for the Philosophy of Science.

[38]  P C Ryan,et al.  Ultrasonic imaging for extracorporeal shockwave lithotripsy: analysis of factors in successful treatment. , 1990, British journal of urology.

[39]  H. Penny Nii,et al.  The Handbook of Artificial Intelligence , 1982 .

[40]  B. Chandrasekaran,et al.  Explaining control strategies in problem solving , 1989, IEEE Expert.

[41]  C. Türk,et al.  Painless piezoelectric extracorporeal lithotripsy. , 1988, The Journal of urology.

[42]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[43]  David J. Spiegelhalter,et al.  Coherent evidence propagation in expert systems , 1987 .

[44]  D Remzi Giant ureteral calculus. , 1973, Urology.

[45]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[46]  Judea Pearl,et al.  Distributed Revision of Composite Beliefs , 1987, Artif. Intell..

[47]  Peter Szolovits,et al.  Causal Understanding of Patient Illness in Medical Diagnosis , 1981, IJCAI.