Photoreflectance and Photoluminescence Study of (GaAs)m/(AlAs)5 (m=3-11) Superlattices: Direct and Indirect Transition

Photoreflectance and photoluminescence measurements are carried out to investigate optical properties of (GaAs) m /(AlAs) 5 superlattices with m =3, 5, 7, 9 and 11 at room temperature, in order to clarify the cross over of the direct and indirect optical transition. Combining the transition energies determined from the photoreflectance measurements with the photoluminescence data, the superlattices are shown to be indirect for m 7. Energy band calculations based on the sp 3 s * tight-binding method are found to explain these results consistently. The lowest allowed direct transition energy obtained from the tight-binding theory agrees well with the energy gap determined from the photoreflectance measurements, whereas the lowest-lying indirect gap agrees with the photoluminescence peak energy for m <7.

[1]  R. Eppenga,et al.  Thin [001] and [110] GaAs/AlAs superlattices: distinction between direct and indirect semiconductors , 1988 .

[2]  T. Hayakawa,et al.  Energy‐band structure of (AlAs)(GaAs) superlattices , 1988 .

[3]  David E. Aspnes,et al.  Third-derivative modulation spectroscopy with low-field electroreflectance , 1973 .

[4]  Jaros,et al.  Zone folding, morphogenesis of charge densities, and the role of periodicity in GaAs-AlxGa1-xAs (001) superlattices. , 1986, Physical review. B, Condensed matter.

[5]  R. Car,et al.  Similarity of (Ga, Al, As) alloys and ultrathin heterostructures: Electronic properties from the empirical pseudopotential method , 1980 .

[6]  M. Jaroš,et al.  Band offsets and zone-folding in GaAsAlAs (001) superlattices , 1987 .

[7]  G. A. Sai-Halasz,et al.  Resonance enhanced umklapp Raman processes in GaAs-Ga1−xAlxAs superlattices , 1978 .

[8]  L. Esaki,et al.  Optical properties of semiconductor superlattice , 1975 .

[9]  M. Recio,et al.  Optical Properties of GaAs/AlAs Short Period Superlattices , 1988 .

[10]  O. J. Glembocki,et al.  Photoreflectance characterization of interband transitions in GaAs/AlGaAs multiple quantum wells and modulation-doped heterojunctions , 1985 .

[11]  E. Yamaguchi,et al.  Theory of the DX Centers in III-V Semiconductors and (001) Superlattices , 1987 .

[12]  Dawson,et al.  Short-period GaAs-AlAs superlattices: Optical properties and electronic structure. , 1988, Physical review. B, Condensed matter.

[13]  J. E. Rowe,et al.  Resonant Nonlinear Optical Susceptibility: Electroreflectance in the Low-Field Limit , 1972 .

[14]  K. H. Ploog,et al.  Luminescence properties of (GaAs)l(AlAs)m superlattices with (l,m) ranging from 1 to 73 , 1988 .

[15]  Kleinman,et al.  Ab initio (GaAs)3(AlAs)3 (001) superlattice calculations: Band offsets and formation enthalpy. , 1987, Physical review. B, Condensed matter.

[16]  Joel N. Schulman,et al.  Electronic properties of the AlAs-GaAs (001) interface and superlattice , 1979 .

[17]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[18]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[19]  C. Hamaguchi,et al.  A Simple Method for Electronic Division in Modulation Spectroscopy , 1973 .

[20]  Alex Zunger,et al.  Electronic structure of ultrathin (GaAs)n(AlAs)n [001] superlattices and the Ga0.5Al0.5As alloy , 1988 .

[21]  J. Ihm,et al.  Effects of the layer thickness on the electronic character in GaAs‐AlAs superlattices , 1987 .

[22]  Walter A. Harrison,et al.  Total energies in the tight-binding theory , 1981 .

[23]  J. Ihm,et al.  Optical properties of thin layer AlAs/GaAs superlattices , 1987 .

[24]  L. Esaki,et al.  Shubnikov—de Haas Oscillations in a Semiconductor Superlattice , 1977 .

[25]  J. L. Shay Photoreflectance Line Shape at the Fundamental Edge in Ultrapure GaAs , 1970 .

[26]  G. Bastard,et al.  Theoretical investigations of superlattice band structure in the envelope-function approximation , 1982 .

[27]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[28]  Y. Mori,et al.  Optical properties of (AlAs)n(GaAs)n superlattices grown by metalorganic chemical vapor deposition , 1985 .

[29]  T. Fukui,et al.  (InAs)1(GaAs)1 Layered Crystal Grown by MOCVD , 1984 .

[30]  J. Dow,et al.  Theory of deep impurities in silicon-germanium alloys , 1984 .

[31]  A. Zunger,et al.  (111) oriented (GaAs)n(AlAs)n superlattices are direct band‐gap materials for all n’s , 1988 .

[32]  P. Vogl,et al.  A Semi-empirical tight-binding theory of the electronic structure of semiconductors†☆ , 1983 .

[33]  Takashi Nakayama,et al.  Band Structure of Semiconductor Superlattices with Ultrathin Layers (GaAs)n/(AlAs)n with n=1, 2, 3, 4 , 1985 .

[34]  S. Nara An Improved Tight Binding Band Structure Calculation of (GaAs)n/(AIAs)n (n=1∼4) Superlattices , 1987 .

[35]  Christensen,et al.  Interband transitions of thin-layer GaAs/AlAs superlattices. , 1987, Physical review. B, Condensed matter.

[36]  K. K. Mon Electronic band structure of (001) GaAs-AlAs superlattices , 1982 .

[37]  S. Hiyamizu,et al.  Electronic properties of Si atomic-planar-doped GaAs/AlAs quantum well structures grown by MBE , 1986 .

[38]  Xia Theoretical analysis of electronic structures of short-period superlattices (GaAs)m/(AlAs)n and corresponding alloys Aln/(m+n)Gam/(m+n)As. , 1988, Physical review. B, Condensed matter.