Decoupled Parameter Estimation Methods for Hammerstein Systems by Using Filtering Technique

The implementation of parameter estimation of Hammerstein systems is much difficult due to the existing parameter products from the nonlinear block and the linear block. This paper directly decomposes the parameter coupling between the nonlinear part and the linear part in a Hammerstein system by using the estimated parameter polynomial of the coupled linear part to filter the Hammerstein system, transforms the Hammerstein system into two forms, and investigates two decoupled parameter estimation methods: the one-step decoupled least squares estimation method and the two-step decoupled least squares estimation method corresponding to the two forms. Furthermore, the computational complexity is compared between the proposed two estimation algorithms. The simulation results show the effectiveness of the proposed two estimation methods with a similar estimation accuracy.

[1]  Shiyin Qin,et al.  A Fast Algorithm of Simultaneous Localization and Mapping for Mobile Robot Based on Ball Particle Filter , 2018, IEEE Access.

[2]  Shuo Zhang,et al.  Separate block-based parameter estimation method for Hammerstein systems , 2018, Royal Society Open Science.

[3]  Lei Wang,et al.  Nonlinear Multimode Industrial Process Fault Detection Using Modified Kernel Principal Component Analysis , 2017, IEEE Access.

[4]  Shuo Zhang,et al.  Instrumental Variable-Based OMP Identification Algorithm for Hammerstein Systems , 2018, Complex..

[5]  Feng Ding,et al.  Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems , 2017, Circuits Syst. Signal Process..

[6]  F. Ding,et al.  Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .

[7]  Yanjun Liu,et al.  Recursive Least Squares Algorithm for Nonlinear Dual-rate Systems Using Missing-Output Estimation Model , 2017, Circuits Syst. Signal Process..

[8]  Shen Yin,et al.  Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System , 2015, IEEE Transactions on Industrial Electronics.

[9]  Xinggao Liu,et al.  Recursive maximum likelihood method for the identification of Hammerstein ARMAX system , 2016 .

[10]  Maryam Dehghani,et al.  Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. , 2014, ISA transactions.

[11]  Long Chen,et al.  On Some Separated Algorithms for Separable Nonlinear Least Squares Problems , 2018, IEEE Transactions on Cybernetics.

[12]  Erik Valdemar Cuevas Jiménez,et al.  Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm , 2017, Applied Intelligence.

[13]  Muhammad Saeed Aslam,et al.  A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems , 2017 .

[14]  Feng Ding,et al.  Expectation maximization estimation for a class of input nonlinear state space systems by using the Kalman smoother , 2018, Signal Process..

[15]  Biao Huang,et al.  Expectation–Maximization Approach to Fault Diagnosis With Missing Data , 2015, IEEE Transactions on Industrial Electronics.

[16]  Feng Ding,et al.  Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.

[17]  Feng Ding,et al.  Data filtering based maximum likelihood extended gradient method for multivariable systems with autoregressive moving average noise , 2018, J. Frankl. Inst..

[18]  Feng Ding,et al.  A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering , 2017, J. Frankl. Inst..

[19]  M. V. Kulikova,et al.  The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking , 2016, IEEE Transactions on Signal Processing.

[20]  Xianqiang Yang,et al.  LPV model identification with an unknown scheduling variable in the presence of missing observations – a robust global approach , 2018, IET Control Theory & Applications.

[21]  Fuad E. Alsaadi,et al.  Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique , 2018 .

[22]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[23]  Wei Xing Zheng,et al.  Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements , 2017, J. Frankl. Inst..

[24]  Wei Xing Zheng,et al.  Iterative identification of block-oriented nonlinear systems based on biconvex optimization , 2015, Syst. Control. Lett..

[25]  Yanjun Liu,et al.  Model recovery for Hammerstein systems using the hierarchical orthogonal matching pursuit method , 2019, J. Comput. Appl. Math..

[26]  Feng Ding,et al.  Multi-step-length gradient iterative algorithm for equation-error type models , 2018, Syst. Control. Lett..

[27]  Walter Kellermann,et al.  Estimating Parameters of Nonlinear Systems Using the Elitist Particle Filter Based on Evolutionary Strategies , 2016, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[28]  F. Ding,et al.  Recasted models-based hierarchical extended stochastic gradient method for MIMO nonlinear systems , 2017 .

[29]  Feng Ding,et al.  Recursive parameter estimation algorithm for multivariate output-error systems , 2018, J. Frankl. Inst..

[30]  Feng Ding,et al.  Decomposition-based recursive least squares identification methods for multivariate pseudo-linear systems using the multi-innovation , 2018, Int. J. Syst. Sci..

[31]  Dakuo He,et al.  Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm. , 2017, ISA transactions.

[32]  Kang Li,et al.  Convergence of the iterative algorithm for a general Hammerstein system identification , 2010, Autom..

[33]  Biao Huang,et al.  Variational Bayesian approach for ARX systems with missing observations and varying time-delays , 2018, Autom..

[34]  Feng Ding,et al.  Parameter estimation algorithms for Hammerstein time-delay systems based on the orthogonal matching pursuit scheme , 2017, IET Signal Process..

[35]  Derek Abbott,et al.  Noise Enhancement in Robust Estimation of Location , 2018, IEEE Transactions on Signal Processing.

[36]  Meihang Li,et al.  Auxiliary Model Based Least Squares Iterative Algorithms for Parameter Estimation of Bilinear Systems Using Interval-Varying Measurements , 2018, IEEE Access.

[37]  Jozef Vörös,et al.  Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models , 2015 .

[38]  Maarten Schoukens,et al.  Evolutionary Identification of Block-Structured Systems , 2017 .

[39]  Dongqing Wang,et al.  Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method , 2018 .

[40]  Zhen Zhang,et al.  Maximum likelihood estimation method for dual-rate Hammerstein systems , 2017 .

[41]  Juan Li,et al.  Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter , 2017, J. Frankl. Inst..

[42]  Jun Xu,et al.  The Adaptive Fading Extended Kalman Filter SOC Estimation Method for Lithium-ion Batteries , 2018, Energy Procedia.

[43]  Xianqiang Yang,et al.  EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data , 2015 .

[44]  Feng Ding,et al.  A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation , 2018, J. Frankl. Inst..

[45]  Xiaoping Liu,et al.  Auxiliary model-based interval-varying multi-innovation least squares identification for multivariable OE-like systems with scarce measurements , 2015 .

[46]  S. Ozer,et al.  System identification using Hammerstein model optimized with differential evolution algorithm , 2016 .

[47]  Xianqiang Yang,et al.  Local Identification of LPV Dual-Rate System With Random Measurement Delays , 2018, IEEE Transactions on Industrial Electronics.

[48]  Qinghua Zhang,et al.  Adaptive Kalman filter for actuator fault diagnosis , 2017, Autom..

[49]  Min Gan,et al.  Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications , 2018, Inf. Sci..

[50]  Wei Chen,et al.  Hierarchical recursive least squares parameter estimation of non-uniformly sampled Hammerstein nonlinear systems based on Kalman filter , 2017, J. Frankl. Inst..

[51]  J. Vörös Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle , 2015 .

[52]  Xiyuan Peng,et al.  Improved particle filter for nonlinear system state , 2008 .

[53]  Derek Abbott,et al.  Capacity of very noisy communication channels based on Fisher information , 2016, Scientific Reports.

[54]  Xinggao Liu,et al.  A novel APSO-aided maximum likelihood identification method for Hammerstein systems , 2013 .

[55]  H. Salhi,et al.  A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models , 2015 .

[56]  Feng Ding,et al.  Parameter estimation algorithms for multivariable Hammerstein CARMA systems , 2016, Inf. Sci..

[57]  Feng Ding,et al.  Recursive Identification Methods for Multivariate Output-error Moving Average Systems Using the Auxiliary Model , 2018 .

[58]  Yanzheng Zhu,et al.  Robust Decentralized Static Output-Feedback Control Design for Large-Scale Nonlinear Systems Using Takagi-Sugeno Fuzzy Models , 2016, IEEE Access.