Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology.

A combination of topological rules and quantum chemical calculations has facilitated the development of a rational metal-organic framework (MOF) synthetic strategy using the tritopic benzene-1,3,5-tribenzoate (btb) linker and a neutral cross-linker 4,4'-bipyridine (bipy). A series of new compounds, namely [M(2)(bipy)](3)(btb)(4) (DUT-23(M), M = Zn, Co, Cu, Ni), [Cu(2)(bisqui)(0.5)](3)(btb)(4) (DUT-24, bisqui = diethyl (R,S)-4,4'-biquinoline-3,3'-dicarboxylate), [Cu(2)(py)(1.5)(H(2)O)(0.5)](3)(btb)(4) (DUT-33, py = pyridine), and [Cu(2)(H(2)O)(2)](3)(btb)(4) (DUT-34), with high specific surface areas and pore volumes (up to 2.03 m(3)  g(-1) for DUT-23(Co)) were synthesized. For DUT-23(Co), excess storage capacities were determined for methane (268 mg g(-1) at 100 bar and 298 K), hydrogen (74 mg g(-1) at 40 bar and 77 K), and n-butane (99 mg g(-1) at 293 K). DUT-34 is a non-cross-linked version of DUT-23 (non-interpenetrated pendant to MOF-14) that possesses open metal sites and can therefore be used as a catalyst. The accessibility of the pores in DUT-34 to potential substrate molecules was proven by liquid phase adsorption. By exchanging the N,N donor 4,4'-bipyridine with a substituted racemic biquinoline, DUT-24 was obtained. This opens a route to the synthesis of a chiral compound, which could be interesting for enantioselective separation.

[1]  F. Glorius,et al.  A family of chiral metal-organic frameworks. , 2011, Chemistry.

[2]  M. Hirscher,et al.  BET specific surface area and pore structure of MOFs determined by hydrogen adsorption at 20 K. , 2011, Physical chemistry chemical physics : PCCP.

[3]  M. Hirscher,et al.  Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. , 2011, Chemistry.

[4]  S. Kaskel,et al.  Liquid-phase adsorption on metal-organic frameworks , 2011 .

[5]  M. Hirscher,et al.  Hydrogen physisorption in high SSA microporous materials A comparison between AX-21_33 and MOF-177 , 2011 .

[6]  Kristina Gedrich,et al.  Eine hochporöse Metall-organische Gerüstverbindung mit zugänglichen Nickelzentren , 2010 .

[7]  U. Mueller,et al.  A highly porous metal-organic framework with open nickel sites. , 2010, Angewandte Chemie.

[8]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[9]  Kenichi Kato,et al.  Control of interpenetration for tuning structural flexibility influences sorption properties. , 2010, Angewandte Chemie.

[10]  Felix Baitalow,et al.  Main-group and transition-element IRMOF homologues. , 2010, Journal of the American Chemical Society.

[11]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[12]  S. Kaskel,et al.  n-Butane adsorption on Cu3(btc)2 and MIL-101 , 2010 .

[13]  Omar K Farha,et al.  Control over catenation in metal-organic frameworks via rational design of the organic building block. , 2010, Journal of the American Chemical Society.

[14]  U. Mueller,et al.  A mesoporous metal-organic framework. , 2009, Angewandte Chemie.

[15]  M. Eddaoudi,et al.  Temperature and concentration control over interpenetration in a metal-organic material. , 2009, Journal of the American Chemical Society.

[16]  O. Shekhah,et al.  Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. , 2009, Nature materials.

[17]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[18]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[19]  R. Angel,et al.  Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: a high-pressure single-crystal X-ray diffraction study. , 2009, Journal of the American Chemical Society.

[20]  H. Klein,et al.  Unerwartete Bildung von molekularem Tetraalkylnickel in einem Olefin/Nickel(0)‐System , 2009 .

[21]  S. Kaskel,et al.  Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco , 2008 .

[22]  Gérard Férey,et al.  Heat of adsorption for hydrogen in microporous high-surface-area materials. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[24]  Wenbin Lin,et al.  Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[25]  A. Matzger,et al.  A crystalline mesoporous coordination copolymer with high microporosity. , 2008, Angewandte Chemie.

[26]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[27]  Takato,et al.  Hydrogen-adsorption Properties of a Novel Lantern-type Dinuclear Co(BDC)(DABCO)1⁄2 , 2007 .

[28]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[29]  Stephen T. Hyde,et al.  Towards enumeration of crystalline frameworks: the 2D hyperbolic approach , 2006 .

[30]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[31]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[32]  Serguei Patchkovskii,et al.  An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. , 2005, Journal of chemical theory and computation.

[33]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[34]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[35]  W. Mori,et al.  Syntheses and Characterization of Microporous Coordination Polymers with Open Frameworks , 2002 .

[36]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[37]  S. Takamizawa,et al.  Design and Gas Adsorption Property of a Three-Dimensional Coordination Polymer with a Stable and Highly Porous Framwork , 2001 .

[38]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[39]  Y. Teshima,et al.  The invariant cubic rod (cylinder) packings: symmetries and coordinates. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[40]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[41]  G. Seifert,et al.  Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme , 1996 .

[42]  Reinhard Nesper,et al.  Nodal surfaces of Fourier series: Fundamental invariants of structured matter , 1991 .

[43]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[44]  Wolfgang Kabsch,et al.  Automatic indexing of rotation diffraction patterns , 1988 .

[45]  A. F. Wells Note on 3D (3,4)‐connected nets , 1986 .