The Use of X-ray Scattering Techniques to Determine Corneal Ultrastructure

The manner in which X-rays are scattered or diffracted by the cornea provides us with valuable insights into the fine structure of the corneal stroma. This is because when X-rays pass through a cornea a diffraction pattern is formed due to scattering from regularly arranged collagen molecules and fibrils that comprise the bulk of the stromal matrix. Collagen provides the cornea with most of its strength, and its proper organisation is believed to be important for tissue transparency. Ever since 1978, when the first X-ray diffraction patterns were obtained from the cornea using radiation from a powerful synchrotron source, biophysicists have recorded and analysed a huge number of X-ray diffraction patterns from many different corneas. This article aims to explain the ideas that underpin our use of X-ray diffraction to investigate corneal ultrastructure, and show how the knowledge gained to date has far-reaching implications for tissue biomechanics, disease changes and transparency.

[1]  K. Meek,et al.  Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice. , 1999, Journal of refractive surgery.

[2]  Terry Magnuson,et al.  Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican , 1998, The Journal of cell biology.

[3]  G. Conrad,et al.  Molecular Cloning and Tissue Distribution of Keratocan , 1996, The Journal of Biological Chemistry.

[4]  S. Hodson,et al.  Transient chloride binding as a contributory factor to corneal stromal swelling in the ox. , 1992, The Journal of physiology.

[5]  M. Capel,et al.  A synchrotron x-ray diffraction study of developing chick corneas. , 1998, Biophysical journal.

[6]  D. E. Freund,et al.  Direct summation of fields for light scattering by fibrils with applications to normal corneas. , 1986, Applied optics.

[7]  J. D. Gregory,et al.  Biochemical analyses of proteoglycans in rabbit corneal scars. , 1990, Investigative ophthalmology & visual science.

[8]  J. Hassell,et al.  Molecular polymorphism of lumican during corneal development. , 1994, Investigative ophthalmology & visual science.

[9]  K. Meek,et al.  Ultrastructure of the corneal stroma: a comparative study. , 1993, Biophysical journal.

[10]  E. Thonar,et al.  Alteration of the stromal architecture and depletion of keratan sulphate proteoglycans in oedematous human corneas: histological, immunochemical and X-ray diffraction evidence. , 1991, Tissue & cell.

[11]  D. Maurice,et al.  The Cornea and Sclera , 1962 .

[12]  J. Randall,et al.  The equivalence of electron-microscope and X-ray observations on collagen fibres , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  A. Quantock,et al.  Scheie's syndrome: the architecture of corneal collagen and distribution of corneal proteoglycans. , 1993, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[14]  R. Bear LONG X-RAY DIFFRACTION SPACINGS OF COLLAGEN , 1942 .

[15]  V. Twersky,et al.  Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea. , 1975, Journal of the Optical Society of America.

[16]  J. Scott,et al.  Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. , 1981, The Biochemical journal.

[17]  A. Quantock An erroneous glycosaminoglycan metabolism leads to corneal opacification in macular corneal dystrophy , 1994 .

[18]  N. Fullwood,et al.  A synchrotron X‐ray study of the changes occurring in the corneal stroma during processing for electron microscopy , 1993, Journal of microscopy.

[19]  S. Mishima,et al.  Flow of water in the corneal stroma. , 1962, Experimental eye research.

[20]  J. Enghild,et al.  Accumulation of beta ig-h3 gene product in corneas with granular dystrophy. , 1998, The American journal of pathology.

[21]  D. Maurice The structure and transparency of the cornea , 1957, The Journal of physiology.

[22]  J. Randall,et al.  Structural Units in Collagen Fibrils , 1954, Nature.

[23]  R. Fraser,et al.  Molecular conformation and packing in collagen fibrils. , 1983, Journal of molecular biology.

[24]  M. Morocutti,et al.  Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and X-ray diffraction investigation. , 1986, Connective tissue research.

[25]  F H Silver,et al.  Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. , 1997, Biophysical journal.

[26]  J. Scott,et al.  ‘Small’-proteoglycan: collagen interactions: Keratan sulphate proteoglycan associates with rabbit corneal collagen fibrils at the ‘a’ and ‘c’ bands , 1985, Bioscience reports.

[27]  C. Cintron,et al.  Structure of corneal scar tissue: an X-ray diffraction study. , 1994, Biophysical journal.

[28]  J. A. Chapman,et al.  The staining pattern of collagen fibrils. I. An analysis of electron micrographs. , 1974, Connective tissue research.

[29]  Z. Sayers,et al.  Synchrotron x-ray diffraction study of corneal stroma. , 1982, Journal of molecular biology.

[30]  G. Conrad,et al.  Immunoanalysis of keratan sulfate proteoglycan from corneal scars. , 1988, Investigative ophthalmology & visual science.

[31]  S. Hodson Corneal stromal swelling , 1997, Progress in Retinal and Eye Research.

[32]  Renato V. Iozzo,et al.  Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility , 1997, Journal of Cell Biology.

[33]  M. Smolek,et al.  Collagen fibril orientation in the human corneal stroma and its implications in keratoconus. , 1997, Investigative ophthalmology & visual science.

[34]  K. Meek,et al.  X‐Ray Diffraction and Transmission Electron Microscopy of Morquio Syndrome Type A Cornea: A Structural Analysis , 1997, Cornea.

[35]  E. Thonar,et al.  Macular corneal dystrophy: the macromolecular structure of the stroma observed using electron microscopy and synchrotron X-ray diffraction. , 1989, Experimental eye research.

[36]  J. Vergnes,et al.  cDNA clone to chick corneal chondroitin/dermatan sulfate proteoglycan reveals identity to decorin. , 1992, Archives of biochemistry and biophysics.

[37]  G. Conrad,et al.  Decorin and biglycan of normal and pathologic human corneas. , 1998, Investigative ophthalmology & visual science.

[38]  J. Goodfellow,et al.  Swelling studies of bovine corneal stroma without bounding membranes. , 1980, The Journal of physiology.

[39]  C. Kublin,et al.  mRNA levels of alpha1(VI) collagen, alpha1(XII) collagen, and beta ig in rabbit cornea during normal development and healing. , 1998, Investigative ophthalmology & visual science.

[40]  A. Daxer,et al.  Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. , 1997, Investigative ophthalmology & visual science.

[41]  S Lees,et al.  Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. , 1987, Connective tissue research.

[42]  D. Birk,et al.  beta-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma. , 1992, Development.

[43]  K. Meek,et al.  Collagen interfibrillar distances in corneal stroma using synchrotron X-ray diffraction: a species study , 1988 .

[44]  E. Adachi,et al.  In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. , 1986, Connective tissue research.

[45]  J. Goodfellow Structural studies of the corneal stroma , 1975 .

[46]  Z. Sayers,et al.  The distribution of electron density in corneal collagen fibrils. , 1981, Current eye research.

[47]  S. Tuft,et al.  A histochemical and x-ray diffraction study of keratoconus epikeratoplasty. Report of two cases. , 1996, Cornea.

[48]  T. Møller-Pedersen,et al.  The cellular basis of corneal transparency: evidence for 'corneal crystallins'. , 1999, Journal of cell science.

[49]  E. Thonar,et al.  Macular corneal dystrophy: reduction in both corneal thickness and collagen interfibrillar spacing. , 1990, Current eye research.

[50]  A. Quantock,et al.  Analysis of High‐Angle Synchrotron X‐Ray Diffraction Patterns Obtained From Macular Dystrophy Corneas , 1992, Cornea.

[51]  J. J. Vos,et al.  Ocular scattered light and visual performance as a function of age. , 1967, American journal of optometry and archives of American Academy of Optometry.

[52]  W. J. Adelman,et al.  Biophysics and physiology of excitable membranes , 1971 .

[53]  E. P. Katz,et al.  The intermolecular space of reconstituted collagen fibrils. , 1973, Journal of molecular biology.

[54]  S. Tuft,et al.  A comparison of proteoglycan arrangement in normal and keratoconus human corneas. , 1990, Biochemical Society transactions.

[55]  R. Hart,et al.  Light scattering in the cornea. , 1969, Journal of the Optical Society of America.

[56]  K. Meek,et al.  Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. , 1997, Biophysical journal.

[57]  T. Wess,et al.  Phasing the meridional diffraction pattern of type I collagen using isomorphous derivatives. , 1989, Journal of molecular biology.

[58]  F. O. Schmitt,et al.  THE CHARGE PROFILE OF THE TROPOCOLLAGEN MACROMOLECULE AND THE PACKING ARRANGEMENT IN NATIVE-TYPE COLLAGEN FIBRILS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[59]  I. Rawe Ultrastructural studies of corneal scar tissue , 1995 .

[60]  C. Kublin,et al.  Proteoglycan changes during restoration of transparency in corneal scars. , 1983, Archives of biochemistry and biophysics.

[61]  J. Revel,et al.  Fine structure of the developing avian cornea. , 1969, Monographs in developmental biology.

[62]  J. Vergnes,et al.  cDNA to chick lumican (corneal keratan sulfate proteoglycan) reveals homology to the small interstitial proteoglycan gene family and expression in muscle and intestine. , 1992, The Journal of biological chemistry.

[63]  John E. Scott Dermatan sulphate proteoglycans : chemistry, biology, chemical pathology , 1993 .

[64]  J. Scott,et al.  Proteoglycan-type I collagen fibril interactions in bone and non-calcifying connective tissues , 1985, Bioscience reports.

[65]  T. Ushiki,et al.  The three-dimensional organization of collagen fibrils in the human cornea and sclera. , 1991, Investigative ophthalmology & visual science.

[66]  M S Borcherding,et al.  Proteoglycans and collagen fibre organization in human corneoscleral tissue. , 1975, Experimental eye research.

[67]  J. A. Chapman,et al.  The staining pattern of collagen fibrils. Improved correlation with sequence data. , 1979, The Journal of biological chemistry.

[68]  D. Birk,et al.  Characterization and developmental regulation of avian corneal beta-1,4-galactosyltransferase mRNA. , 1996, Experimental eye research.

[69]  R. Beuerman,et al.  Healing Processes in the Cornea , 1989 .

[70]  C. Nave,et al.  An X‐ray diffraction analysis of rat tail tendons treated with Cupromeronic Blue , 1985, Journal of microscopy.

[71]  H. D. Cavanagh,et al.  Quantitative Assessment of Anteroposterior Keratocyte Density in the Normal Rabbit Cornea , 1995, Cornea.

[72]  T. Hardingham,et al.  Proteoglycans: many forms and many functions , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[73]  K. Meek,et al.  The integration of the corneal and limbal fibrils in the human eye. , 1998, Biophysical journal.

[74]  N. Morris,et al.  Two type XII-like collagens localize to the surface of banded collagen fibrils , 1991, The Journal of cell biology.

[75]  G. Benedek,et al.  Theory of transparency of the eye. , 1971, Applied optics.

[76]  Atsushi Shiraishi,et al.  Characterization and Expression of the Mouse Lumican Gene* , 1997, The Journal of Biological Chemistry.

[77]  A. Vellodi,et al.  Ultrastructural study of the cornea in a bone marrow-transplanted Hurler syndrome patient. , 1996, Experimental eye research.

[78]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[79]  C. Cintron,et al.  Localization of type XII collagen in normal and healing rabbit cornea by in situ hybridization. , 1995, Experimental eye research.

[80]  C. Kublin,et al.  Regeneration of corneal tissue. , 1977, Developmental biology.

[81]  E. Thonar,et al.  Macular corneal dystrophy type II: Multiple studies on a cornea with low levels of sulphated keratan sulphate , 1997, Eye.

[82]  A. Anseth Glycosaminoglycans in the developing corneal stroma. , 1961, Experimental eye research.

[83]  J. Coulombre,et al.  Corneal development. I. Corneal transparency. , 1958, Journal of cellular and comparative physiology.

[84]  J. W. Smith The transparency of the corneal stroma. , 1969, Vision research.

[85]  R. Bear,et al.  Improved profiles of electron density distribution along collagen fibrils. , 1973, Biophysical journal.

[86]  E. Thonar,et al.  Proteoglycans contain a 4.6 A repeat in muscular dystrophy corneas: x-ray diffraction evidence. , 1996, Biophysical journal.

[87]  K. Meek,et al.  Interpretation of the electron microscopical appearance of collagen fibrils from corneal stroma , 1983 .

[88]  江橋 節郎,et al.  Handbook on synchrotron radiation , 1983 .

[89]  F. Bettelheim,et al.  Distribution of hexosamines in bovine cornea. , 1976, Investigative ophthalmology.

[90]  C. R. Worthington,et al.  Low-angle X-ray diffraction patterns of collagen , 1956, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[91]  C. Nave,et al.  The axial electron density in collagen fibrils from human corneal stroma. , 1982, Current eye research.

[92]  N. Ehlers,et al.  CENTRAL THICKNESS IN CORNEAL DISORDERS , 1978, Acta ophthalmologica.

[93]  C. R. Worthington,et al.  X-ray diffraction study of the cornea , 1985 .

[94]  D. Hulmes,et al.  Interpretation of the meridional X-ray diffraction pattern from collagen fibres in terms of the known amino acid sequence. , 1977, Journal of molecular biology.

[95]  John R. Helliwell,et al.  Macromolecular Crystallography with Synchrotron Radiation , 1992 .

[96]  K. Meek,et al.  The inhibition of sugar-induced structural alterations in collagen by aspirin and other compounds. , 1994, Biochemical and biophysical research communications.

[97]  A. Miller Collagen: the organic matrix of bone. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[98]  S. Tuft,et al.  Synchrotron x-ray diffraction studies of keratoconus corneal stroma. , 1992, Investigative ophthalmology & visual science.

[99]  C. Nave,et al.  A synchrotron X-ray diffraction study of bovine cornea stained with cupromeronic blue. , 1986, Collagen and related research.

[100]  A. Garner,et al.  Pathobiology of ocular disease : a dynamic approach , 1982 .

[101]  E. Wachtel,et al.  The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. , 1991, Biochimica et biophysica acta.

[102]  E. Tasheva,et al.  Mimecan, the 25-kDa Corneal Keratan Sulfate Proteoglycan, Is a Product of the Gene Producing Osteoglycin* , 1997, The Journal of Biological Chemistry.

[103]  A. Quantock,et al.  Axial electron density of human scleral collagen. Location of proteoglycans by x-ray diffraction. , 1988, Biophysical journal.

[104]  P. Timmins,et al.  Neutron diffraction studies of the corneal stroma. , 1982, Journal of molecular biology.

[105]  J. Goodfellow,et al.  X-ray diffraction studies of the corneal stroma. , 1978, Journal of molecular biology.

[106]  J. Frame,et al.  Observations on the collagen and proteinpolysaccharide complex of rabbit cornea stroma. , 1969, Journal of cell science.

[107]  M. Kenney,et al.  Hyaluronidase treatment, collagen fibril packing, and normal transparency in rabbit corneas. , 2000, Journal of refractive surgery.

[108]  M. Kobayashi,et al.  Experimental formation of 100 nm periodic fibrils in the mouse corneal stroma and trabecular meshwork. , 1989, Investigative ophthalmology & visual science.

[109]  K. Doane,et al.  Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. , 1990, Journal of cell science.

[110]  J. Scott,et al.  Identification of specific binding sites for keratan sulphate proteoglycans and chondroitin-dermatan sulphate proteoglycans on collagen fibrils in cornea by the use of cupromeronic blue in 'critical-electrolyte-concentration' techniques. , 1988, The Biochemical journal.

[111]  H F Edelhauser,et al.  Ultrastructure in anterior and posterior stroma of perfused human and rabbit corneas. Relation to transparency. , 1995, Investigative ophthalmology & visual science.

[112]  A. Franks An Optically Focusing X-Ray Diffraction Camera , 1955 .

[113]  S. Hodson,et al.  Cornea, and the swelling of polyelectrolyte gels of biological interest , 1998 .

[114]  R. S. Wall,et al.  Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. , 1991, Biophysical journal.

[115]  R. S. Wall,et al.  Bovine corneal stroma contains a structural glycoprotein located in the gap region of the collagen fibrils , 1988, Bioscience reports.

[116]  Giorgio Margaritondo,et al.  Introduction to synchrotron radiation , 1988 .

[117]  F. Bettelheim,et al.  Water gradients across bovine cornea. , 1988, Investigative ophthalmology & visual science.

[118]  H. Mook,et al.  A study of dense mineralized tissue by neutron diffraction , 1984 .

[119]  D. Hulmes,et al.  Quasi-hexagonal molecular packing in collagen fibrils , 1979, Nature.

[120]  C. Paterson,et al.  Acute calcification in alkali-injured rabbit cornea treated with synthetic inhibitor of metalloproteinases (SIMP). , 1998, Cornea.

[121]  E. Thonar,et al.  Synchrotron X-ray diffraction in atypical macular dystrophy , 1993, Eye.

[122]  K. Meek,et al.  Vitamins and analgesics in the prevention of collagen ageing. , 1996, Age and ageing.

[123]  N. Fullwood,et al.  An ultrastructural, time-resolved study of freezing in the corneal stroma. , 1994, Journal of molecular biology.

[124]  A. Daxer,et al.  Collagen fibrils in the human corneal stroma: structure and aging. , 1998, Investigative ophthalmology & visual science.

[125]  R. Hart,et al.  Structural theory of the swelling pressure of corneal stroma in saline. , 1971, The Bulletin of mathematical biophysics.

[126]  A. Daxer,et al.  Structural transformation of collagen fibrils in corneal stroma during drying. An x-ray scattering study. , 1993, Biophysical journal.

[127]  C. Kublin,et al.  Keratan sulfate and dermatan sulfate proteoglycans associate with type VI collagen in fetal rabbit cornea. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[128]  S. Akhtar,et al.  Deposits and proteoglycan changes in primary and recurrent granular dystrophy of the cornea. , 1999, Archives of ophthalmology.

[129]  C Nave,et al.  The organisation of collagen fibrils in the human corneal stroma: a synchrotron X-ray diffraction study. , 1987, Current eye research.

[130]  E. Cohen,et al.  Corneal thinning in macular corneal dystrophy. , 1986, American journal of ophthalmology.

[131]  D. Albert,et al.  Principles and practice of ophthalmology , 1999 .

[132]  A. Quantock,et al.  Remodelling of the Corneal Stroma After Lamellar Keratoplasty: A Synchrotron X-Ray Diffraction Study , 1994, Cornea.

[133]  K. Meek,et al.  Circumcorneal annulus of collagen fibrils in the human limbus. , 1998, Investigative ophthalmology & visual science.

[134]  Dieter G. Weiss,et al.  The Keratocyte Network of Human Cornea: A Three-Dimensional Study Using Confocal Laser Scanning Fluorescence Microscopy , 2000, Cornea.

[135]  C. R. Worthington,et al.  The structure of cornea , 1984, Quarterly Reviews of Biophysics.

[136]  D A Newsome,et al.  Human corneal stroma contains three distinct collagens. , 1982, Investigative ophthalmology & visual science.

[137]  S. McGavin,et al.  The structure of collagen--an X-ray study. , 1970, Journal of ultrastructure research.

[138]  C. Kublin,et al.  Morphologic analyses of proteoglycans in rabbit corneal scars. , 1990, Investigative ophthalmology & visual science.

[139]  André Guinier,et al.  X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies) , 1963 .

[140]  R. S. Wall,et al.  Ageing of the human corneal stroma: structural and biochemical changes. , 1992, Biochimica et biophysica acta.

[141]  Z. Sayers,et al.  Interpretation of the meridional x-ray diffraction pattern from collagen fibrils in corneal stroma. , 1981, Journal of molecular biology.

[142]  Dieter R. Zimmermann,et al.  Type VI collagen is a major component of the human cornea , 1986, FEBS letters.

[143]  K. Meek,et al.  Swelling studies on the cornea and sclera: the effects of pH and ionic strength. , 1999, Biophysical journal.

[144]  G. Oster,et al.  Scattering from cylindrically symmetric systems , 1952 .

[145]  A. Poole Proteoglycans in health and disease: structures and functions. , 1986, The Biochemical journal.

[146]  J. Orgel,et al.  The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. , 2000, Structure.

[147]  N. Malik Ageing of Human Corneal and Scleral Collagen , 1993 .