Micro-nano-integration based on automated serial assembly

Within this paper an approach for micro-nanointegration of MEMS-based devices or smart miniaturised systems is suggested. In order to overcome the limits of conventional, silicon-based MEMS manufacturing techniques, automated serial nano-assembly processes can be applied. The process chain of such a technique and solutions for key issues with respect to automation are presented. This involves both the key processes and the infrastructure for assembly on the nanoscale. As an application example, results from the automated assembly of carbon nanotube (CNT) based devices in the scanning electron microscope (SEM) are provided.

[1]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[2]  Hiroshi Masuhara,et al.  Three‐dimensional optical trapping and laser ablation of a single polymer latex particle in water , 1991 .

[3]  Ronald S. Fearing,et al.  Automating microassembly with ortho-tweezers and force sensing , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[4]  T. Sato,et al.  Construction of an ultra-micro manipulation system based on visual control -realization of nano-hand-eye system , 1994, ETFA '94. 1994 IEEE Symposium on Emerging Technologies and Factory Automation. (SEIKEN) Symposium) -Novel Disciplines for the Next Century- Proceedings.

[5]  K. Tsui,et al.  Micromachined end-effector and techniques for directed MEMS assembly , 2004 .

[6]  Bradley J. Nelson,et al.  Visually guided microassembly using optical microscopes and active vision techniques , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  Nicolas Chaillet,et al.  Micromanipulation and Micro-Assembly Systems , 2008 .

[8]  Sergej Fatikow Automated nanohandling by microrobots , 2008 .

[9]  T. Sievers Global sensor feedback for automatic nanohandling inside a scanning electron microscope , 2006 .

[10]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[11]  M. Rodriguez,et al.  A task-oriented teleoperation system for assembly in the microworld , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[12]  Tomomasa Sato,et al.  Hand-eye system in nano manipulation world , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[13]  Oliver Frick,et al.  Automated Nano-Assembly in the SEM I: Challenges in setting up a warehouse , 2008 .

[14]  A F TAYLOR,et al.  ELECTRON BEAM WELDING. , 1964, The Annals of occupational hygiene.

[15]  Bradley J. Nelson,et al.  A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[17]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[18]  Sergej Fatikow,et al.  Microrobot System for Automatic Nanohandling Inside a Scanning Electron Microscope , 2007 .

[19]  Heikki N. Koivo,et al.  Environmental influences on microassembly , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[21]  Ulrich Dilthey,et al.  Montage hybrider Mikrosysteme , 2005 .

[22]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..