Impermeability of Y3Al5O12 ceramic against molten glassy calcium-magnesium-alumina-silicate

[1]  Cheng-Long Zhang,et al.  Effects of TiO2 doping on the defect chemistry and thermo-physical properties of Yb2O3 stabilized ZrO2 , 2017 .

[2]  Zhao Xue,et al.  The influence of Gd doping on thermophysical properties, elasticity modulus and phase stability of garnet-type (Y1-xGdx)3Al5O12 ceramics , 2017 .

[3]  R. Naraparaju,et al.  The Accelerating Effect of CaSO4 Within CMAS (CaO–MgO–Al2O3–SiO2) and Its Effect on the Infiltration Behavior in EB‐PVD 7YSZ , 2016 .

[4]  Min Liu,et al.  Research of in situ modified PS-PVD thermal barrier coating against CMAS (CaO–MgO–Al2O3–SiO2) corrosion , 2016 .

[5]  Guangwen Zhou,et al.  Microstructure characteristics of EB-PVD YSZ thermal barrier coatings corroded by molten volcanic ash , 2016 .

[6]  Hongbo Guo,et al.  Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration , 2014 .

[7]  Yanchun Zhou,et al.  Theoretical Investigation on Mechanical and Thermal Properties of a Promising Thermal Barrier Material: Yb3Al5O12 , 2014 .

[8]  Liang Wang,et al.  Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS) , 2014, Journal of Thermal Spray Technology.

[9]  Xizhi Fan,et al.  Phase stability of plasma sprayed YAG–YSZ composite beads/coatings at high temperature , 2013 .

[10]  R. Darolia,et al.  Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects , 2013 .

[11]  Julie M. Drexler,et al.  Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass , 2012 .

[12]  Julie M. Drexler,et al.  Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits , 2010 .

[13]  Y. Sohn,et al.  Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation , 2009 .

[14]  Chien-Hsin Yang,et al.  Effect of the aluminum source on the formation of yttrium aluminum garnet (YAG) powder via solid state reaction , 2008 .

[15]  Xinqing Ma,et al.  Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits , 2007 .

[16]  Hongbo Guo,et al.  Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings , 2006 .

[17]  Xi Chen Calcium–magnesium–alumina–silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings , 2006 .

[18]  A. Evans,et al.  A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration , 2005 .

[19]  N. Padture,et al.  Low Thermal Conductivity in Garnets , 2005 .

[20]  K. Fujita,et al.  Phase-selective cathodoluminescence spectroscopy of Er:YAG glass-ceramics , 2004 .

[21]  Hsin Wang,et al.  Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3–ZrO2 (YSZ) Thermal-Barrier Coatings , 2004 .

[22]  Carlos G. Levi,et al.  MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .

[23]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[24]  Caimei Wang,et al.  Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides , 2017 .

[25]  Song Guo Fabrication of the Aluminoborosilicate YAG Glass-Ceramic Phosphor for White LED , 2010 .

[26]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .