A Highly Scalable Multilevel Schwarz Method with Boundary Geometry Preserving Coarse Spaces for 3D Elasticity Problems on Domains with Complex Geometry

We consider overlapping Schwarz algorithms for solving linear and nonlinear systems of equations arising from the finite element discretization of elasticity problems on unstructured meshes in three dimensions. The parallel scalability of Schwarz methods is determined almost completely by how the coarse space is constructed. In this paper, we introduce a low cost, boundary geometry preserving coarse mesh that shares the same boundary geometry with the fine mesh but has a better scalability than the coarse mesh obtained by uniformly coarsening the fine mesh. A new coarsening algorithm and a partitioning strategy are developed. We numerically show that a multilevel Schwarz method with the new coarse spaces is highly scalable, in terms of the total compute time, for solving some three-dimensional linear and nonlinear elasticity equations discretized on unstructured meshes with several hundreds of millions of unknowns and on a supercomputer with over 10,000 processor cores.

[1]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[2]  O. Widlund,et al.  Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity , 2009 .

[3]  V. Venkatakrishnan,et al.  Agglomeration multigrid for the Euler equations , 1995 .

[4]  Gary L. Miller,et al.  Optimal Coarsening of Unstructured Meshes , 1999, J. Algorithms.

[5]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[6]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[7]  Luca F. Pavarino,et al.  A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems , 2000, Numer. Linear Algebra Appl..

[8]  Xiao-Chuan Cai,et al.  A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation , 2014, J. Comput. Phys..

[9]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[10]  C. Ollivier-Gooch Coarsening unstructured meshes by edge contraction , 2003 .

[11]  Xiao-Chuan Cai,et al.  Two-Level Newton and Hybrid Schwarz Preconditioners for Fluid-Structure Interaction , 2010, SIAM J. Sci. Comput..

[12]  Xiao-Chuan Cai,et al.  A parallel two‐level domain decomposition based one‐shot method for shape optimization problems , 2014 .

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[15]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[16]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[17]  Simone Scacchi,et al.  Parallel multilevel solvers for the cardiac electro-mechanical coupling , 2015 .

[18]  Matthew G. Knepley,et al.  Unstructured Geometric Multigrid in Two and Three Dimensions on Complex and Graded Meshes , 2013, SIAM J. Sci. Comput..

[19]  George Karypis,et al.  Parmetis parallel graph partitioning and sparse matrix ordering library , 1997 .

[20]  Charbel Farhat,et al.  A FETI‐DP method for the parallel iterative solution of indefinite and complex‐valued solid and shell vibration problems , 2005 .

[21]  J. Demmel,et al.  Parallel Multigrid Solver for 3D Unstructured Finite Element Problems , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[22]  A. Klawonn,et al.  Highly scalable parallel domain decomposition methods with an application to biomechanics , 2010 .

[23]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[24]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[25]  John Ockendon,et al.  Applied Solid Mechanics: Prologue , 2008 .

[26]  D. A. Field,et al.  Implementing Watson's algorithm in three dimensions , 1986, SCG '86.

[27]  D. J. Mavriplis,et al.  AGGLOMERATION MULTIGRID FOR VISCOUS TURBULENT FLOWS , 1994 .

[28]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[29]  Hervé Guillard,et al.  Node-nested multi-grid method with Delaunay coarsening , 1993 .

[30]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[31]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[32]  C. Ollivier-Gooch Multigrid acceleration of an upwind Euler solver on unstructured meshes , 1995 .

[33]  C. Farhat,et al.  A dual‐primal FETI method for solving a class of fluid–structure interaction problems in the frequency domain , 2012 .

[34]  Barry F. Smith,et al.  Domain decomposition algorithms for the partial differential equations of linear elasticity , 1990 .

[35]  Barry Smith,et al.  An Optimal Domain Decomposition Preconditioner for the Finite Element Solution of Linear Elasticity Problems , 2017, SIAM J. Sci. Comput..

[36]  Olof B. Widlund,et al.  An Overlapping Schwarz Algorithm for Almost Incompressible Elasticity , 2009, SIAM J. Numer. Anal..

[37]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[38]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[39]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .