Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays

We summarize our work on polarization effects in arrays of low-symmetry L-shaped gold nanoparticles. A collection of experiments used to characterize both the linear and second-order optical responses of the arrays is discussed. The responses of the arrays are found to be exceptionally sensitive to polarization. This sensitivity is determined to arise from structural properties including particle size, shape, spacing, and orientation. Nonlinear polarization measurements are shown to yield unexpected and very interesting information concerning the symmetry of the nanoparticle arrays. The combined linear and nonlinear results confirm that the smallest details of arrays influence optical responses.

[1]  G. Schatz Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates , 2001 .

[2]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[3]  H. Ditlbacher,et al.  Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays , 2001 .

[4]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[5]  G Seifert,et al.  Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass. , 2003, Optics letters.

[6]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[7]  N. Zheludev,et al.  Optical properties of closely packed nanoparticle films: spheroids and nanoshells , 2004 .

[8]  Ajay Nahata,et al.  Enhanced nonlinear optical conversion from a periodically nanostructured metal film. , 2003, Optics letters.

[9]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[10]  Konstantins Jefimovs,et al.  Optical activity in subwavelength-period arrays of chiral metallic particles , 2003 .

[11]  A. M. Malvezzi,et al.  Linear and nonlinear optical characterization of Ga nanoparticle monolayers , 2001 .

[12]  Bernhard Lamprecht,et al.  SHG studies of plasmon dephasing in nanoparticles , 1999 .

[13]  Konstantins Jefimovs,et al.  Linear and Second-Order Nonlinear Optical Properties of Arrays of Noncentrosymmetric Gold Nanoparticles , 2002 .

[14]  Robert J. Warmack,et al.  Optical absorbance of silver ellipsoidal particles , 1987 .

[15]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[16]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[17]  Vladimir M. Shalaev,et al.  Large local optical activity in fractal aggregates of nanoparticles , 2001 .

[18]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[19]  S. Linden,et al.  Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. , 2001, Physical review letters.

[20]  Vladimir M. Shalaev,et al.  Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites , 1999 .

[21]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[22]  H. Craighead,et al.  CHARACTERIZATION AND OPTICAL PROPERTIES OF ARRAYS OF SMALL GOLD PARTICLES. , 1984 .

[23]  F. Aussenegg,et al.  Optical dichroism of lithographically designed silver nanoparticle films. , 1996, Optics letters.

[24]  Tony F. Heinz,et al.  Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material , 1999 .

[25]  Joseph Zyss,et al.  Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. , 2004, Physical review letters.

[26]  J. P. Woerdman,et al.  Polarization analysis of propagating surface plasmons in a subwavelength hole array , 2002, physics/0208033.

[27]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[28]  H. Ditlbacher,et al.  Spectrally coded optical data storage by metal nanoparticles. , 2000, Optics letters.

[29]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[30]  V. Shalaev,et al.  NONLINEAR OPTICS OF RANDOM METAL-DIELECTRIC FILMS , 1998 .

[31]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .