The electric dipole moment of the deuteron from the QCD θ-term
暂无分享,去创建一个
U. Meißner | C. Hanhart | A. Nogga | A. Wirzba | J. Bsaisou | S. Liebig | U. Meissner | Ulf-G. Meissner | Ulf-G. Meißner
[1] F. Guo,et al. Baryon electric dipole moments from strong CP violation , 2012, 1210.5887.
[2] Alan D. Martin,et al. Review of Particle Physics (RPP) , 2012 .
[3] B. Gibson,et al. Model dependence of the deuteron electric dipole moment , 2012 .
[4] J. Rademacker,et al. Evidence for CP violation in time-integrated D0->h-h+ decay rates , 2012 .
[5] A. Walker-Loud,et al. Electromagnetic self-energy contribution to M(p)-M(n) and the isovector nucleon magnetic polarizability. , 2012, Physical review letters.
[6] N. Uraltsev,et al. Loop-Less Electric Dipole Moment of the Nucleon in the Standard Model , 2012, 1202.6270.
[7] Gibson,et al. Evidence for CP violation in time-integrated $D^0 \rightarrow h^-h^+$ decay rates , 2011 .
[8] E. al.,et al. Measurement of CP--violating asymmetries in D0 -->pi+ pi- and D0 -->K+K- decays at CDF , 2011, 1111.5023.
[9] J. A. Oller,et al. The chiral representation of the $\pi N$ scattering amplitude and the pion-nucleon sigma term , 2011, 1110.3797.
[10] I. Khriplovich,et al. CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules , 2011 .
[11] E. Mereghetti,et al. Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory , 2011, 1210.0159.
[12] C. Hanhart,et al. Precision calculation of threshold π−d scattering, πN scattering lengths, and the GMO sum rule , 2011, 1107.5509.
[13] J. A. Oller,et al. Relativistic chiral representation of the \pi N scattering amplitude , 2011, 1107.3989.
[14] C. M. Maekawa,et al. The time-reversal- and parity-violating nuclear potential in chiral effective theory , 2011, 1106.6119.
[15] E. Mereghetti,et al. P and T violating form factors of the deuteron. , 2011, Physical review letters.
[16] B. Gibson,et al. Model Dependence of the 2H Electric Dipole Moment , 2010, 1011.4968.
[17] M. Misiak,et al. Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.
[18] R. Timmermans,et al. The nucleon electric dipole form factor from dimension-six time-reversal violation , 2010, 1006.2304.
[19] C. Hanhart,et al. Towards a high-precision calculation for the pion-nucleus scattering lengths , 2010, 1003.3826.
[20] E. Mereghetti,et al. The effective chiral Lagrangian from the theta term , 2010, 1002.2391.
[21] F. Guo,et al. New insights into the neutron electric dipole moment , 2009, 0911.3981.
[22] U. Meißner,et al. Extraction of the strong neutron-proton mass difference from the charge symmetry breaking in p n →d π 0 , 2009, 0907.4671.
[23] P. Bruns,et al. Aspects of meson-baryon scattering in three- and two-flavor chiral perturbation theory , 2009, 0905.2810.
[24] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[25] P. Navrátil,et al. Nuclear Electric Dipole Moment of 3He , 2008, 0804.3815.
[26] V. Bernard,et al. Chiral Perturbation Theory and Baryon Properties , 2007, 0706.0312.
[27] S. Su,et al. Low-energy precision tests of supersymmetry , 2006, hep-ph/0612057.
[28] S. Beane,et al. Strong-isospin violation in the neutron-proton mass difference from fully-dynamical lattice QCD and PQQCD , 2006, hep-lat/0605014.
[29] W. Morse,et al. Resonance method of electric-dipole-moment measurements in storage rings. , 2006, Physical review letters.
[30] M. Pospelov,et al. Electric dipole moments as probes of new physics , 2005, hep-ph/0504231.
[31] C. M. Maekawa,et al. The electric dipole form factor of the nucleon , 2005, 1010.4078.
[32] R. Timmermans,et al. $P$- and $T$-odd two-nucleon interaction and the deuteron electric dipole moment , 2004, nucl-th/0408060.
[33] C. M. Maekawa,et al. Nuclear parity-violation in effective field theory , 2004, nucl-th/0407087.
[34] M. Frink,et al. Chiral extrapolations of baryon masses for unquenched three flavor lattice simulations , 2004, hep-lat/0404018.
[35] K. Olive,et al. Probing CP Violation with the Deuteron Electric Dipole Moment , 2004, hep-ph/0402023.
[36] M. Iwasaki,et al. A New Method For A Sensitive Deuteron EDM Experiment , 2003, hep-ex/0308063.
[37] C. Hanhart,et al. Pion nucleon scattering in a meson exchange model , 2003, nucl-th/0307072.
[38] J. Gasser,et al. Ground-state energy of pionic hydrogen to one loop , 2002, hep-ph/0206068.
[39] T. Becher,et al. Low energy analysis of pi N --> pi N , 2001, hep-ph/0103263.
[40] R. Machleidt. The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.
[41] U. Meißner,et al. Pion-nucleon scattering in chiral perturbation theory II: Fourth order calculation , 2000, hep-ph/0002162.
[42] N. Kaiser. Chiral three pi exchange N N potentials: Results for diagrams proportional to g(A)**4 and g(A)**6 , 1999, nucl-th/9912054.
[43] P. Buttiker,et al. Pion-nucleon scattering inside the Mandelstam triangle , 1999, hep-ph/9908247.
[44] I. Khriplovich,et al. P and T odd electromagnetic moments of deuteron in chiral limit , 1999, nucl-th/9904081.
[45] U. Meißner,et al. Pion-nucleon scattering in chiral perturbation theory (I): Isospin-symmetric case☆ , 1998, hep-ph/9803266.
[46] T. Goldman,et al. Electromagnetic Corrections to the One-Pion-Exchange Potential , 1997, nucl-th/9710067.
[47] N. Kaiser,et al. Peripheral nucleon-nucleon phase shifts and chiral symmetry , 1997, nucl-th/9706045.
[48] U. Meißner,et al. Chiral expansion of baryon masses and $\sigma$-terms , 1996, hep-ph/9607432.
[49] V. Bernard,et al. Chiral dynamics in nucleons and nuclei , 1995, hep-ph/9501384.
[50] Stoks,et al. Construction of high-quality NN potential models. , 1994, Physical review. C, Nuclear physics.
[51] S. Weinberg. Three body interactions among nucleons and pions , 1992, hep-ph/9209257.
[52] A. Pich,et al. Strong CP-violation in an effective chiral lagrangian approach , 1991 .
[53] M. B. Gavela,et al. Signets of CP violation , 1991 .
[54] Weinberg,et al. Larger Higgs-boson-exchange terms in the neutron electric dipole moment. , 1989, Physical review letters.
[55] D. Wyler,et al. Effective lagrangian analysis of new interactions and flavour conservation , 1986 .
[56] Heinrich Leutwyler,et al. Chiral perturbation theory to one loop , 1984 .
[57] R. J. Crewther,et al. Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics , 1979 .
[58] V. Baluni. CP Violating Effects in QCD , 1979 .
[59] G. Hooft. Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .
[60] R. Dashen. Some Features of Chiral Symmetry Breaking , 1971 .
[61] W. Cottingham,et al. The neutron proton mass difference and electron scattering experiments , 1963 .
[62] W. Marsden. I and J , 2012 .
[63] R. Wiringa,et al. Accurate nucleon-nucleon potential with charge-independence breaking. , 1995, Physical review. C, Nuclear physics.
[64] H. Leutwyler,et al. η → 3π to one loop☆ , 1985 .
[65] R. Dashen. CHIRAL SU(3) x SU(3) AS A SYMMETRY OF THE STRONG INTERACTIONS. , 1969 .
[66] R. Gatto,et al. NEUTRON-PROTON MASS DIFFERENCE BY DISPERSION THEORY , 1959 .