Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance

[1]  B. Korgel,et al.  Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries , 2012 .

[2]  L. Ernst,et al.  Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O , 2005 .

[3]  D. Aurbach,et al.  Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions , 2012 .

[4]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[5]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[6]  Doron Aurbach,et al.  The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition , 1994 .

[7]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[8]  P. Moreau,et al.  New insights into the silicon-based electrode's irreversibility along cycle life through simple gravimetric method , 2012 .

[9]  Min Park,et al.  Amorphous silicon anode for lithium-ion rechargeable batteries , 2003 .

[10]  Doron Aurbach,et al.  A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution , 2013 .

[11]  B. Lucht,et al.  Inhibition of the Detrimental Effects of Water Impurities in Lithium-Ion Batteries , 2007 .

[12]  Akinori Kita,et al.  Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes , 2011 .

[13]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[14]  Sylvie Grugeon,et al.  XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode , 2005 .

[15]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[16]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[17]  Hervé Martinez,et al.  Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive , 2012 .

[18]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[19]  D. Aurbach,et al.  Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component , 2012 .

[20]  K. Stevenson,et al.  Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions , 2012 .

[21]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[22]  B. Korgel,et al.  Influences of gold, binder and electrolyte on silicon nanowire performance in Li-ion batteries , 2012 .

[23]  Doron Aurbach,et al.  Rechargeable lithiated silicon–sulfur (SLS) battery prototypes , 2012 .

[24]  Jun-ichi Yamaki,et al.  Decomposition reaction of LiPF6-based electrolytes for lithium ion cells , 2006 .

[25]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[26]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[27]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[28]  Adam Heller,et al.  High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. , 2012, Chemical communications.

[29]  Masayuki Morita,et al.  Analyses of Capacity Loss and Improvement of Cycle Performance for a High-Voltage Hybrid Electrochemical Capacitor , 2007 .

[30]  L. Martin,et al.  Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries , 2012 .

[31]  T. Sakai,et al.  Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries , 2006 .

[32]  Young-Kyu Han,et al.  Low Li + binding affinity: An important characteristic for additives to form solid electrolyte inter , 2011 .

[33]  Doron Aurbach,et al.  An Advanced Lithium Ion Battery Based on Amorphous Silicon Film Anode and Integrated xLi2MnO3.(1-x)LiNiyMnzCo1-y-zO2 Cathode , 2013 .

[34]  D. Pribat,et al.  Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes , 2012 .