Multi-View Bistatic Synthetic Aperture Radar Target Recognition Based on Multi-Input Deep Convolutional Neural Network

Bistatic synthetic aperture radar (SAR) can provide additional observables and scattering information of the target from multiple views. In this paper, a new bistatic SAR automatic target recognition (ATR) method based on multi-input deep convolutional neural network is proposed. The geometry of the multi-view bistatic SAR ATR is modeled, and an electromagnetic simulation approach is utilized as an alternative to generate enough bistatic SAR images for network training. Then a deep convolutional neural network with multiple inputs is designed, and the features of the multi-view bistatic SAR images will be effectively learned by the proposed network. Therefore, the proposed method can achieve a superior recognition performance. Experimental results have shown the superiority of the proposed method based on the electromagnetic simulation bistatic SAR data.