Stabilization of the Multi-asset Black–Scholes PDE Using Differential Flatness Theory

[1]  Gerasimos Rigatos,et al.  Nonlinear Control and Filtering Using Differential Flatness Approaches , 2015 .

[2]  Gerasimos Rigatos Stabilization of option price dynamics through feedback control of the Black-Scholes PDE , 2015 .

[3]  Gerasimos Rigatos Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity in Biological Neurons , 2014 .

[4]  Abdul-Qayyum M. Khaliq,et al.  Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..

[5]  Ahmed Maidi,et al.  Distributed control of nonlinear diffusion systems by input–output linearization , 2014 .

[6]  Silviu-Iulian Niculescu,et al.  Control of Drilling Vibrations: A Time-Delay System-Based Approach , 2013, TDS.

[7]  Driss Boutat,et al.  A triangular canonical form for a class of 0-flat nonlinear systems , 2011, Int. J. Control.

[8]  A. Kugi,et al.  Trajectory planning for a two-dimensional quasi-linear parabolic PDE based on finite difference semi-discretizations , 2011 .

[9]  Axel Kröner,et al.  Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations , 2011, Comput. Methods Appl. Math..

[10]  Boris Lohmann,et al.  Design of a decoupling controller structure for first order hyperbolic PDEs with distributed control action , 2010, Proceedings of the 2010 American Control Conference.

[11]  Frank Woittennek,et al.  Controllability of Networks of Spatially One-Dimensional Second Order PDEs---An Algebraic Approach , 2010, SIAM J. Control. Optim..

[12]  Jean Lévine On necessary and sufficient conditions for differential flatness , 2010, Applicable Algebra in Engineering, Communication and Computing.

[13]  Joachim Rudolph,et al.  Boundary Value Problems and Convolutional Systems over Rings of Ultradistributions , 2010 .

[14]  J. Lévine Analysis and Control of Nonlinear Systems: A Flatness-based Approach , 2009 .

[15]  Hongjoong Kim,et al.  Adaptive lattice methods for multi-asset models , 2008, Comput. Math. Appl..

[16]  Jesús Vigo-Aguiar,et al.  On smoothing of the Crank-Nicolson scheme and higher order schemes for pricing barrier options , 2007 .

[17]  Stephen A. Billings,et al.  State-Space Reconstruction and Spatio-Temporal Prediction of Lattice Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[18]  Jonas Persson,et al.  Space-time adaptive finite difference method for European multi-asset options , 2007, Comput. Math. Appl..

[19]  Weijiu Liu,et al.  Boundary Feedback Stabilization of an Unstable Heat Equation , 2003, SIAM J. Control. Optim..

[20]  Miroslav Krstic,et al.  Infinite Dimensional Backstepping-Style Feedback Transformations for a Heat Equation with an Arbitrary Level of Instability , 2002, Eur. J. Control.

[21]  Miroslav Krstic,et al.  Boundary control of an unstable heat equation via measurement of domain-averaged temperature , 2001, IEEE Trans. Autom. Control..

[22]  Alexandre Sedoglavic A Generalization Of Flatness To Nonlinear Systems Of Partial Differential Equations. Application To , 2001 .

[23]  Philippe Martin,et al.  Motion planning for the heat equation , 2000 .

[24]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[25]  Mark A. Pinsky,et al.  Partial differential equations and boundary-value problems with applications , 1991 .