Elastically deformable models

The theory of elasticity describes deformable materials such as rubber, cloth, paper, and flexible metals. We employ elasticity theory to construct differential equations that model the behavior of non-rigid curves, surfaces, and solids as a function of time. Elastically deformable models are active: they respond in a natural way to applied forces, constraints, ambient media, and impenetrable obstacles. The models are fundamentally dynamic and realistic animation is created by numerically solving their underlying differential equations. Thus, the description of shape and the description of motion are unified.

[1]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[2]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[3]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[4]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[5]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[6]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[7]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[8]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[9]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[10]  Demetri Terzopoulos Matching Deformable Models to Images: Direct and Iterative Solutions , 1987, Topical Meeting on Machine Vision.

[11]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[12]  G. Pinder,et al.  Numerical solution of partial differential equations in science and engineering , 1982 .

[13]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[14]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[15]  Alan H. Barr,et al.  Global and local deformations of solid primitives , 1984, SIGGRAPH.

[16]  M. M. Carroll,et al.  Foundations of Solid Mechanics , 1985 .

[17]  Brian A. Barsky,et al.  Using dynamic analysis to animate articulated bodies such as humans and robots , 1985 .

[18]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[19]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Craig Upson,et al.  Combining physical and visual simulation—creation of the planet Jupiter for the film “2010” , 1986, SIGGRAPH.

[21]  Darwyn R. Peachey,et al.  Modeling waves and surf , 1986, SIGGRAPH.

[22]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[23]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[24]  Jerry Weil,et al.  The synthesis of cloth objects , 1986, SIGGRAPH.

[25]  Carl Richard Feynman,et al.  Modeling the appearance of cloth , 1986 .

[26]  Alain Fournier,et al.  A simple model of ocean waves , 1986, SIGGRAPH.