Query Optimization for a Graph Database with Visual Queries

We have constructed a graph database system where a query can be expressed intuitively as a diagram. The query result is also visualized as a diagram based on the intrinsic relationship among the returned data. In this database system, CORAL plays the role of a query execution engine to evaluate queries and deduce results. In order to understand the effectiveness of CORAL optimization techniques on visual query processing.We present and analyze the performance and scalability of CORAL's query rewriting strategies, which include Supplementary Magic Templates, Magic Templates, Context Factoring, Naive Backtracking, and Without Rewriting method. Our research surprisingly shows that the Without Rewriting method takes the minimum total time to process the benchmark queries. Furthermore, CORAL's default optimization method Supplementary Magic Templates is not uniformly the best choice for every query. The “optimization” of visual queries is beneficial if one could select the right optimization approach for each query.

[1]  Alberto O. Mendelzon,et al.  Architecture and Applications of the Hy+ Visualization System , 1994, IBM Syst. J..

[2]  Dimitra Vista,et al.  Efficient Evaluation of Visual Queries Using Deductive Databases , 1993, Workshop on Programming with Logic Databases , ILPS.

[3]  Paul DuBois,et al.  MySQL Reference Manual , 2002 .

[4]  Letizia Tanca,et al.  What you Always Wanted to Know About Datalog (And Never Dared to Ask) , 1989, IEEE Trans. Knowl. Data Eng..

[5]  Ray Welland,et al.  Evaluating Object-Oriented Query Languages , 1994, Comput. J..

[6]  Letizia Tanca,et al.  G-Log: A Declarative Graphical Query Language , 1991, DOOD.

[7]  Catriel Beeri,et al.  On the power of magic , 1987, J. Log. Program..

[8]  Tok Wang Ling,et al.  GLASS: a graphical query language for semi-structured data , 2003, Eighth International Conference on Database Systems for Advanced Applications, 2003. (DASFAA 2003). Proceedings..

[9]  Jeffrey F. Naughton,et al.  On the expected size of recursive Datalog queries , 1991, J. Comput. Syst. Sci..

[10]  Raghu Ramakrishnan,et al.  Magic Templates: A Spellbinding Approach To Logic Programs , 1991, J. Log. Program..

[11]  Yue Wang,et al.  A graph database with visual queries for genomics , 2005, APBC.

[12]  Raghu Ramakrishnan,et al.  Performance Evaluation of Data Intensive Logic Programs , 1988, Foundations of Deductive Databases and Logic Programming..

[13]  Jeffrey F. Naughton,et al.  Argument Reduction by Factoring , 1989, VLDB.

[14]  Marc Gyssens,et al.  A graph-oriented object model for database end-user interfaces , 1990, SIGMOD '90.

[15]  M. Erwig Xing: a visual XML query language , 2003, J. Vis. Lang. Comput..

[16]  Isabel F. Cruz,et al.  Implementation of a constraint-based visualization system , 2000, Proceeding 2000 IEEE International Symposium on Visual Languages.

[17]  Alexandra Poulovassilis,et al.  Hyperlog: A Graph-Based System for Database Browsing, Querying, and Update , 2001, IEEE Trans. Knowl. Data Eng..

[18]  Divesh Srivastava,et al.  Rule Ordering in Bottom-Up Fixpoint Evaluation of Logic Programs , 1990, IEEE Trans. Knowl. Data Eng..

[19]  Michael Stonebraker,et al.  VIQING: visual interactive querying , 1998, Proceedings. 1998 IEEE Symposium on Visual Languages (Cat. No.98TB100254).

[20]  Divesh Srivastava,et al.  The CORAL deductive system , 1994, The VLDB Journal.