Smart materials: in situ gel-forming systems for nasal delivery.

In the last decade in situ gelling systems have emerged as a novel approach in intranasal delivery of therapeutics, capturing the interest of scientific community. Considerable advances have been currently made in the development of novel formulations containing both natural and synthetic polymers. In this paper we present recent developments on in situ gelling systems for nasal delivery, highlighting the mechanisms that govern their formation.

[1]  O. Sammour,et al.  Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. , 2014, International journal of pharmaceutics.

[2]  H. Mahajan,et al.  Thermally reversible xyloglucan gels as vehicles for nasal drug delivery , 2012, Drug delivery.

[3]  A. Nada,et al.  Formulation and In Vitro Evaluation of Salbutamol Sulphate In Situ Gelling Nasal Inserts , 2013, AAPS PharmSciTech.

[4]  M. Herbst-Kralovetz,et al.  Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. , 2011, Vaccine.

[5]  M. Morilla,et al.  Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels , 2012, International journal of nanomedicine.

[6]  H. Choi,et al.  Effect of additives on the physicochemical properties of liquid suppository bases. , 1999, International journal of pharmaceutics.

[7]  D. Attwood,et al.  The micellar properties of the poly(oxyethylene)-poly(oxypropylene) copolymer Pluronic F127 in water and electrolyte solution , 1985 .

[8]  R. Murthy,et al.  Thermoreversible-mucoadhesive Gel for nasal delivery of sumatriptan , 2006, AAPS PharmSciTech.

[9]  Qizhi Zhang,et al.  Preparation of ion-activated in situ gel systems of scopolamine hydrobromide and evaluation of its antimotion sickness efficacy , 2007, Acta Pharmacologica Sinica.

[10]  Per Gisle Djupesland,et al.  Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review , 2012, Drug Delivery and Translational Research.

[11]  P. Vavia,et al.  Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery , 2015, Journal of liposome research.

[12]  Xi Chen,et al.  Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel , 2013, The Journal of pharmacy and pharmacology.

[13]  L. Illum Nasal drug delivery--possibilities, problems and solutions. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[14]  P. Chaudhari,et al.  Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation , 2014, Drug delivery.

[15]  A. Bandyopadhyay,et al.  Development and Characterization of Mucoadhesive In Situ Nasal Gel of Midazolam Prepared with Ficus carica Mucilage , 2010, AAPS PharmSciTech.

[16]  T. Garg,et al.  Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[17]  O. Smidsrod,et al.  Gelation of gellan gum , 1987 .

[18]  C. McCormick,et al.  Tailoring the network properties of Ca2+ crosslinked Aloe vera polysaccharide hydrogels for in situ release of therapeutic agents. , 2008, Biomacromolecules.

[19]  Yu Liu,et al.  Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. , 2014, International journal of pharmaceutics.

[20]  R. Bodmeier,et al.  In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[21]  Mohan G. Hebsur,et al.  Development and Characterization , 1998 .

[22]  Xiangrong Song,et al.  Formulation and Evaluation of In Situ Gelling Systems for Intranasal Administration of Gastrodin , 2011, AAPS PharmSciTech.

[23]  R. Bodmeier,et al.  Effect of polymer molecular weight and of polymer blends on the properties of rapidly gelling nasal inserts , 2012, Drug development and industrial pharmacy.

[24]  H. Nazar,et al.  Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[25]  K. Lyseng-Williamson Fentanyl pectin nasal spray: a guide to its use in breakthrough pain in opioid-tolerant adults with cancer , 2012 .

[26]  Xin-guo Jiang,et al.  In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. , 2009, International journal of pharmaceutics.

[27]  A. Bernkop‐Schnürch,et al.  Chitosan-based drug delivery systems. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[28]  G. Zhai,et al.  Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin , 2012, Journal of drug targeting.

[29]  H. Nazar,et al.  Hydrogels in mucosal delivery. , 2012, Therapeutic delivery.

[30]  P. Vavia,et al.  Nanosuspension Based In Situ Gelling Nasal Spray of Carvedilol: Development, In Vitro and In Vivo Characterization , 2013, AAPS PharmSciTech.

[31]  Kwon H Kim,et al.  Poly(ethylene oxide/propylene oxide) copolymer thermo-reversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. , 2011, International journal of pharmaceutics.

[32]  A. Naik,et al.  Formulation and Evaluation of Thermosensitive Biogels for Nose to Brain Delivery of Doxepin , 2014, BioMed research international.

[33]  A. Bernkop‐Schnürch,et al.  Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. , 2003, Journal of pharmaceutical sciences.

[34]  Yiguang Jin,et al.  Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels. , 2015, International journal of pharmaceutics.

[35]  K. Song,et al.  Carbopol-Incorporated Thermoreversible Gel for Intranasal Drug Delivery , 2015, Molecules.

[36]  H. Mahajan,et al.  Thiolated xyloglucan: Synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. , 2013, Carbohydrate polymers.

[37]  A. Avachat,et al.  Thermoreversible Nasal In situ Gel of Venlafaxine Hydrochloride: Formulation, Characterization, and Pharmacodynamic Evaluation , 2012, AAPS PharmSciTech.

[38]  S. Pund,et al.  Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[39]  R. Hester,et al.  Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation. , 2008, Biomacromolecules.

[40]  A. Badawi,et al.  Preclinical evaluation of dual action intranasal formulation intended for postoperative/cancer associated therapies. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[41]  R Scott Obach,et al.  Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. , 2010, Journal of medicinal chemistry.

[42]  A. Burton,et al.  Fentanyl pectin nasal spray (FPNS) with PecSys®: onset of action, consistency, and acceptability in breakthrough cancer pain (BTCP) , 2009 .

[43]  Anil Kumar,et al.  Thermally Triggered Mucoadhesive In Situ Gel of Loratadine: β-Cyclodextrin Complex for Nasal Delivery , 2013, AAPS PharmSciTech.

[44]  A. Bozkır,et al.  Preparation and in vitro/in vivo evaluation of mucosal adjuvant in situ forming gels with diphtheria toxoid , 2014, Drug delivery.

[45]  Z. Zuo,et al.  Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. , 2014, International journal of pharmaceutics.

[46]  K. Lyseng-Williamson Fentanyl Pectin Nasal Spray , 2011, CNS drugs.

[47]  P. Watts,et al.  PecSys: in situ gelling system for optimised nasal drug delivery , 2009 .

[48]  L. Illum Nasal drug delivery: new developments and strategies. , 2002, Drug discovery today.

[49]  M. Perelman,et al.  Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip , 2012, Drug development and industrial pharmacy.

[50]  K. Hosny,et al.  Intranasal in situ gel loaded with saquinavir mesylate nanosized microemulsion: preparation, characterization, and in vivo evaluation. , 2014, International journal of pharmaceutics.

[51]  L. Illum Nasal drug delivery - recent developments and future prospects. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[52]  A. Taranalli,et al.  Formulation and evaluation of thermoreversible, mucoadhesive in situ intranasal gel of rizatriptan benzoate , 2014, Journal of Sol-Gel Science and Technology.

[53]  H E Junginger,et al.  Chitosan and its derivatives in mucosal drug and vaccine delivery. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[54]  J. Haensler,et al.  In situ gelling nasal inserts for influenza vaccine delivery , 2010, Drug development and industrial pharmacy.

[55]  N. M. Zaki,et al.  Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[56]  P. Caliceti,et al.  A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. , 2013, Biomaterials science.

[57]  K. Song,et al.  Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. , 2011, Journal of pharmaceutical sciences.

[58]  E. Souto,et al.  Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. , 2013, International journal of pharmaceutics.

[59]  J. Silvius Lipid Modifications of Intracellular Signal-Transducing Proteins , 1999 .

[60]  Wei Wei,et al.  A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. , 2007, Biomaterials.

[61]  Wei Xu,et al.  Preparation of a Paeonol-Containing Temperature-Sensitive In Situ Gel and Its Preliminary Efficacy on Allergic Rhinitis , 2013, International journal of molecular sciences.