Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides.

Rechargeable aqueous zinc-ion batteries have been considered one of the promising alternative energy-storage systems to lithium ion-batteries owing to their low cost and high safety. However, there is lack of long-life positive materials, which severely restricts the development of zinc-ion batteries. The strong interactions present between the intercalated multivalent cations and host materials inevitably cause structural distortions and create large migration barriers for the diffusion of cations, resulting in poor cycling stability and limited rate performance. Here, we report the application of bilayered ammonium vanadium oxide (NH4V4O10) as the cathode material for zinc-ion batteries. A self-healing lamellar structure, which combines a macroscopically reversible morphological transformation and a microscopically adjustable interlayer spacing to accommodate the strong interactions, is observed upon insertion and release of cations. This stable architecture enables a specific capacity of 147 mA h g-1 at a current density of 200 mA g-1 (voltage window: 1.7-0.8 V vs Zn2+/Zn) and a capacity retention of more than 70.3% over 5000 cycles (5000 mA g-1). Our finding provides a new alternative for zinc-ion batteries and inspiration for how to further develop advanced positive electrodes by employing materials with flexible microarchitectures.

[1]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[2]  J. Tarascon,et al.  V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. , 2011, Journal of the American Chemical Society.

[3]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[4]  G. Cao,et al.  Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides , 2006 .

[5]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[6]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[7]  J. Gim,et al.  A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications , 2015 .

[8]  Xufeng Zhou,et al.  Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System , 2015 .

[9]  M. Armand,et al.  Building better batteries , 2008, Nature.

[10]  B. Li,et al.  Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide , 2018, Advanced materials.

[11]  X. Zhang,et al.  Corrosion and electrochemistry of zinc , 1996 .

[12]  Zhijun Jia,et al.  Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries , 2015 .

[13]  S. Banerjee,et al.  Defining Diffusion Pathways in Intercalation Cathode Materials: Some Lessons from V2O5 on Directing Cation Traffic , 2018 .

[14]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[15]  Xufeng Zhou,et al.  Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery , 2015, Scientific Reports.

[16]  D. Steingart,et al.  Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate , 2016 .

[17]  E. Pomerantseva,et al.  Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes , 2018 .

[18]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[19]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[20]  Rahul Malik,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[21]  J. Gim,et al.  Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode , 2015 .

[22]  L. Mai,et al.  Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. , 2017, ACS applied materials & interfaces.

[23]  Guoxiu Wang,et al.  Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. , 2013, ACS nano.

[24]  A. Trapananti,et al.  Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries , 2018, Solid State Ionics.

[25]  Yongjiu Lei,et al.  Rechargeable Aqueous Zinc‐Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode , 2018, Advanced materials.

[26]  Anne C. Dillon,et al.  Layered vanadium and molybdenum oxides: batteries and electrochromics , 2009 .

[27]  Joseph Paul Baboo,et al.  Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode , 2017 .

[28]  E. Marcos,et al.  Determination of the Second Hydration Shell of Cr3+ and Zn2+ in Aqueous Solutions by Extended X-ray Absorption Fine Structure , 1995 .

[29]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[30]  D. H. Maylotte,et al.  A Study of the K-edge Absorption Spectra of Selected Vanadium Compounds. , 1984 .

[31]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[32]  M. Taheri,et al.  Chemically Preintercalated Bilayered KxV2O5·nH2O Nanobelts as a High-Performing Cathode Material for K-Ion Batteries , 2018 .

[33]  Ying Zhao,et al.  Lithiation across interconnected V2O5 nanoparticle networks , 2017 .

[34]  F. Kang,et al.  Secondary batteries with multivalent ions for energy storage , 2015, Scientific Reports.

[35]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[36]  Chunsheng Wang,et al.  Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode , 2017 .

[37]  Hongwei Cheng,et al.  Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance , 2016, Scientific Reports.

[38]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[39]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[40]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[41]  Jian-jun Zhang,et al.  A Smart Flexible Zinc Battery with Cooling Recovery Ability. , 2017, Angewandte Chemie.

[42]  L. Mai,et al.  Layered VS2 Nanosheet‐Based Aqueous Zn Ion Battery Cathode , 2017 .

[43]  A. Marschilok,et al.  Communication—Sol-Gel Synthesized Magnesium Vanadium Oxide, MgxV2O5 · nH2O: The Role of Structural Mg2+ on Battery Performance , 2016 .

[44]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[45]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[46]  Albert L. Lipson,et al.  A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery , 2016 .

[47]  Y. Chiang,et al.  Reversible Aluminum‐Ion Intercalation in Prussian Blue Analogs and Demonstration of a High‐Power Aluminum‐Ion Asymmetric Capacitor , 2015 .

[48]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[49]  Jun Chen,et al.  Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities , 2017, Nature Communications.

[50]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[51]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[52]  Xiaofeng Fan,et al.  Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance , 2016, Nature Communications.

[53]  Yang‐Kook Sun,et al.  Hollandite-type Al-doped VO1.52(OH)0.77 as a zinc ion insertion host material , 2017 .

[54]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[55]  Yi Cui,et al.  Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. , 2012, ACS nano.

[56]  L. Mai,et al.  High-Performance Aqueous Zinc-Ion Battery Based on Layered H2 V3 O8 Nanowire Cathode. , 2017, Small.

[57]  Yang‐Kook Sun,et al.  Na2V6O16·3H2O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. , 2018, Nano letters.

[58]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[59]  Hongda Du,et al.  Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage , 2009 .

[60]  L. Mai,et al.  Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery. , 2018, Nano letters.

[61]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[62]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[63]  Thomas J. Macdonald,et al.  Trends in Aluminium‐Based Intercalation Batteries , 2017 .

[64]  Jun Chen,et al.  Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. , 2008, Journal of the American Chemical Society.

[65]  S. Banerjee,et al.  Evaluation of Multivalent Cation Insertion in Single- and Double-Layered Polymorphs of V2O5. , 2017, ACS applied materials & interfaces.

[66]  Boeun Lee,et al.  Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. , 2015, Chemical Communications.

[67]  B. Cho,et al.  Todorokite-type MnO2 as a zinc-ion intercalating material , 2013 .

[68]  X. Zhang Electrochemical Thermodynamics and Kinetics , 1996 .

[69]  Hochun Lee,et al.  Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material , 2017 .

[70]  Gongzheng Yang,et al.  An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide , 2018 .

[71]  Yunhui Huang,et al.  Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3 , 2016 .

[72]  정경윤,et al.  Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries , 2015 .

[73]  F. Kang,et al.  Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life , 2017 .

[74]  E. Pomerantseva,et al.  Effect of aging and hydrothermal treatment on electrochemical performance of chemically pre-intercalated Na–V–O nanowires for Na-ion batteries , 2016 .

[75]  S. Passerini,et al.  Bilayered Nanostructured V2O5·nH2O for Metal Batteries , 2016 .

[76]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[77]  J. Gim,et al.  A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries , 2016 .

[78]  Jin Yi,et al.  Recent Progress in Aqueous Lithium‐Ion Batteries , 2012 .

[79]  Yongchang Liu,et al.  Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. , 2016, Journal of the American Chemical Society.

[80]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[81]  Kristin A. Persson,et al.  First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. , 2015, Chemical communications.