Complex amplitude reflectance of the liquid crystal light valve.

The complex amplitude reflectance of the liquid crystal light valve (LCLV) is determined as a function of the writing intensity and applied voltage using an approximate model. The input and output polarizers are assumed to have arbitrary directions. The theoretical results based on this model match our experimental measurements. This theory allows us to optimize the operation of the LCLV as an intensity or phase-only spatial light modulator. When the polarizers are orthogonal and the input polarizer is at -34 degrees with the front liquid crystal director, the intensity reflectance reaches 100% (compared to 81% for the conventional configuration). Phase-only modulation is realizable by use of appropriate applied voltage bias and configuration of polarizers.

[1]  V. O. Blackledge,et al.  CONTROL OF ELECTRON EMISSION BY ELASTIC SURFACE WAVES , 1969 .

[2]  M. Schadt,et al.  Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal , 1971 .

[3]  Rasheed M. A. Azzam,et al.  Simplified Approach to the Propagation of Polarized Light in Anisotropic Media—Application to Liquid Crystals* , 1972 .

[4]  Frederic J. Kahn,et al.  Electric‐Field‐Induced Orientational Deformation of Nematic Liquid Crystals: Tunable Birefringence , 1972 .

[5]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[6]  Dwight W. Berreman,et al.  Optics in smoothly varying anisotropic planar structures: Application to liquid-crystal twist cells* , 1973 .

[7]  D. W. Berreman,et al.  Dynamics of liquid‐crystal twist cells , 1974 .

[8]  H. Tarry,et al.  Optical characteristics of twisted nematic liquid-crystal films , 1974 .

[9]  Jan Grinberg,et al.  A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve , 1975 .

[10]  H. Tarry,et al.  The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90 degrees , 1975 .

[11]  J. Grinberg,et al.  Transmission characteristics of a twisted nematic liquid-crystal layer* , 1976 .

[12]  H. B. Brown,et al.  Application Of The Liquid Crystal Light Valve To Real-Time Optical Data Processing , 1978 .

[13]  G. Baur Optical Characteristics of Liquid Crystal Displays , 1980 .

[14]  R. Gagnon Liquid-crystal twist-cell optics , 1981 .

[15]  W. Bleha Progress in liquid crystal light valves , 1983 .

[16]  Uzi Efron,et al.  Silicon Liquid Crystal Light Valves: Status And Issues , 1983 .

[17]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[18]  Shin-Tson Wu,et al.  Liquid-Crystal-Based Visible-To-Infrared Dynamic Image Converter , 1985 .

[19]  John N. Lee,et al.  The Current Status Of Two-Dimensional Spatial Light Modulator Technology , 1986, Other Conferences.

[20]  Shin-Tson Wu,et al.  Nematic liquid crystals for spatial light modulators: recent studies , 1986 .

[21]  M. Schadt,et al.  Optics of twisted nematic and supertwisted nematic liquid‐crystal displays , 1986 .

[22]  E Marom,et al.  Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. , 1988, Optics letters.

[23]  Francis T. S. Yu,et al.  Self-organizing optical neural network for unsupervised learning , 1990 .

[24]  D. Yocky,et al.  Simple measurement of the phase modulation capability of liquid crystal phase-only light modulators , 1990 .

[25]  Bahaa E. A. Saleh,et al.  Theory and design of the liquid crystal TV as an optical spatial phase modulator , 1990 .

[26]  B. Saleh,et al.  Optimal Twist and Polarization Angles for the Reflective Liquid Crystal Light Modulator , 1991 .