Combined sticking: a new approach for finite-amplitude Coulomb frictional contact

[1]  Ettore Pennestrì,et al.  Review and comparison of dry friction force models , 2016 .

[2]  T. Rabczuk,et al.  An alternative formulation for quasi-static frictional and cohesive contact problems , 2014 .

[3]  Giorgio Zavarise,et al.  The node-to-segment algorithm for 2D frictionless contact: Classical formulation and special cases , 2009 .

[4]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[5]  Carlos Alberto Conceição António,et al.  Algorithms for the analysis of 3D finite strain contact problems , 2004 .

[6]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[7]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[8]  Peter Wriggers,et al.  A simple formulation for two‐dimensional contact problems using a moving friction cone , 2003 .

[9]  Joze Korelc,et al.  Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes , 2002, Engineering with Computers.

[10]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[11]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[12]  D. Stewart Finite-dimensional contact mechanics , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Zhi-Qiang Feng,et al.  The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms , 1998 .

[14]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[15]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[16]  F.M.F. Simões,et al.  Dissipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem , 1995 .

[17]  Shaker A. Meguid,et al.  On the modeling of frictional contact problems using variational inequalities , 1995 .

[18]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[19]  Naif Alajlan,et al.  Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems , 2019, Computers, Materials & Continua.

[20]  T. Rabczuk,et al.  Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems , 2015 .

[21]  Yoshihiro Kanno,et al.  Three‐dimensional quasi‐static frictional contact by using second‐order cone linear complementarity problem , 2006 .

[22]  Pedro Miguel de Almeida Areias,et al.  Finite element technology, damage modeling, contact constraints and fracture analysis , 2003 .

[23]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[24]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[25]  C. Coulomb Théorie des machines simples, en ayant égard au frottement de leurs parties et a la roideur des cordages , 1968 .