On embedding trees into uniformly convex Banach spaces
暂无分享,去创建一个
[1] P. Enflo. On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .
[2] Per Enflo,et al. On a problem of Smirnov , 1970 .
[3] A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .
[4] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[5] Jean Bourgain,et al. On type of metric spaces , 1986 .
[6] J. Bourgain. The metrical interpretation of superreflexivity in banach spaces , 1986 .
[7] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[8] J. Lindenstrauss,et al. On lipschitz embedding of finite metric spaces in low dimensional normed spaces , 1987 .
[9] J. Matou. Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .
[10] J. Arias-de-Reyna,et al. Finite metric spaces needing high dimension for lipschitz embeddings in banach spaces , 1992 .
[11] Nathan Linial,et al. The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.