Weighting a resampled particle in Sequential Monte Carlo

The Sequential Importance Resampling (SIR) method is the core of the Sequential Monte Carlo (SMC) algorithms (a.k.a., particle filters). In this work, we point out a suitable choice for weighting properly a resampled particle. This observation entails several theoretical and practical consequences, allowing also the design of novel sampling schemes. Specifically, we describe one theoretical result about the sequential estimation of the marginal likelihood. Moreover, we suggest a novel resampling procedure for SMC algorithms called partial resampling, involving only a subset of the current cloud of particles. Clearly, this scheme attenuates the additional variance in the Monte Carlo estimators generated by the use of the resampling.

[1]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[2]  Jukka Corander,et al.  Layered adaptive importance sampling , 2015, Statistics and Computing.

[3]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[4]  David Luengo,et al.  Generalized Multiple Importance Sampling , 2015, Statistical Science.

[5]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[6]  Fredrik Lindsten,et al.  Nested Sequential Monte Carlo Methods , 2015, ICML.

[7]  Yuji Matsumoto,et al.  Particle Filter , 2022 .

[8]  Donald B. Rubin,et al.  Comment : A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest : The SIR Algorithm , 1987 .

[9]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[10]  Jukka Corander,et al.  An adaptive population importance sampler , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[12]  Anthony Lee,et al.  On the role of interaction in sequential Monte Carlo algorithms , 2013, 1309.2918.

[13]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[16]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[17]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[18]  Petar M. Djuric,et al.  Resampling algorithms and architectures for distributed particle filters , 2005, IEEE Transactions on Signal Processing.

[19]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[20]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[21]  Jukka Corander,et al.  An Adaptive Population Importance Sampler: Learning From Uncertainty , 2015, IEEE Transactions on Signal Processing.

[22]  D. Rubin,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[23]  Eric Moulines,et al.  On parallel implementation of sequential Monte Carlo methods: the island particle model , 2013, Stat. Comput..

[24]  Mónica F. Bugallo,et al.  Adaptive importance sampling in signal processing , 2015, Digit. Signal Process..

[25]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[26]  Joaquín Míguez,et al.  A proof of uniform convergence over time for a distributed particle filter , 2015, Signal Process..

[27]  Fabrizio Leisen,et al.  ON MULTIPLE TRY SCHEMES AND THE PARTICLE METROPOLIS-HASTINGS ALGORITHM , 2014 .

[28]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[29]  Luca Martino,et al.  Cooperative parallel particle filters for online model selection and applications to urban mobility , 2015, Digit. Signal Process..

[30]  Petar M. Djuric,et al.  Resampling Algorithms for Particle Filters: A Computational Complexity Perspective , 2004, EURASIP J. Adv. Signal Process..

[31]  J. Marin,et al.  Population Monte Carlo , 2004 .

[32]  Joaquín Míguez,et al.  Analysis of parallelizable resampling algorithms for particle filtering , 2007, Signal Process..

[33]  P. Moral,et al.  Convergence properties of weighted particle islands with application to the double bootstrap algorithm , 2014, 1410.4231.