Characterizing Online Public Discussions through Patterns of Participant Interactions

Public discussions on social media platforms are an intrinsic part of online information consumption. Characterizing the diverse range of discussions which can arise is crucial for these platforms, as they may seek to organize and curate them. This paper introduces a framework to characterize public discussions, relying on a representation that captures a broad set of social patterns which emerge from the interactions between interlocutors, comments, and audience reactions. We apply our framework to study public discussions on Facebook at two complementary scales. First, at the level of individual discussions, we use it to predict a discussion's future trajectory, anticipating future antisocial actions (such as participants blocking each other) and forecasting the discussion's growth. Second, we systematically analyze the variation of discussions across thousands of Facebook sub-communities, revealing subtle differences (and unexpected similarities) in how people interact when discussing online content. We further show that this variation is driven more by participant tendencies than by the content triggering these discussions.

[1]  Ramakrishnan Srikant,et al.  Mining newsgroups using networks arising from social behavior , 2003, WWW '03.

[2]  Michail Tsikerdekis,et al.  The effects of perceived anonymity and anonymity states on conformity and groupthink in online communities: A Wikipedia study , 2013, J. Assoc. Inf. Sci. Technol..

[3]  Anand Rajaraman,et al.  Mining of Massive Datasets , 2011 .

[4]  Soroush Vosoughi,et al.  Me, My Echo Chamber, and I: Introspection on Social Media Polarization , 2018, WWW.

[5]  Cristian Danescu-Niculescu-Mizil,et al.  Conversations Gone Awry: Detecting Early Signs of Conversational Failure , 2018, ACL.

[6]  John G. Breslin,et al.  A Content Analysis: How Wikipedia Talk Pages Are Used , 2010 .

[7]  Dan Cosley,et al.  Finding social roles in Wikipedia , 2011, iConference.

[8]  Arun Sundararajan,et al.  Digital Access, Political Networks and the Diffusion of Democracy , 2012, Soc. Networks.

[9]  Sean J. Taylor,et al.  Social Influence Bias: A Randomized Experiment , 2013, Science.

[10]  Brendesha M. Tynes,et al.  Constructing Sexuality and Identity in an Online Teen Chat Room. , 2004 .

[11]  Mattia Samory,et al.  Content attribution ignoring content , 2016, WebSci.

[12]  Sean J. Taylor,et al.  Discussion Quality Diffuses in the Digital Public Square , 2017, WWW.

[13]  Lothar Richter Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets. Cambridge, Cambridge University Press. , 2018 .

[14]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[15]  Reijo Savolainen,et al.  Asking and sharing information in the blogosphere: The case of slimming blogs , 2011 .

[16]  Vicenç Gómez,et al.  To Thread or Not to Thread: The Impact of Conversation Threading on Online Discussion , 2017, ICWSM.

[17]  Lada A. Adamic,et al.  Exposure to ideologically diverse news and opinion on Facebook , 2015, Science.

[18]  Bo Pang,et al.  The effect of wording on message propagation: Topic- and author-controlled natural experiments on Twitter , 2014, ACL.

[19]  Aniket Kittur,et al.  The polymath project: lessons from a successful online collaboration in mathematics , 2011, CHI.

[20]  Scott Wright,et al.  Democracy, deliberation and design: the case of online discussion forums , 2007, New Media Soc..

[21]  Gözde Özbal,et al.  Exploring Text Virality in Social Networks , 2011, ICWSM.

[22]  Eric Gilbert,et al.  Predicting tie strength with social media , 2009, CHI.

[23]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[24]  Mor Naaman,et al.  The impact of network structure on breaking ties in online social networks: unfollowing on twitter , 2011, CHI.

[25]  Lucas Dixon,et al.  Ex Machina: Personal Attacks Seen at Scale , 2016, WWW.

[26]  Alan Borning,et al.  Is this what you meant?: promoting listening on the web with reflect , 2012, CHI.

[27]  Dylan Walker,et al.  Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks , 2010, ICIS.

[28]  Aik-Ling Tan,et al.  Conversational analysis as an analytical tool for face‐to‐face and online conversations , 2006 .

[29]  E. Schegloff,et al.  Opening up Closings , 1973 .

[30]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[31]  Jure Leskovec,et al.  Exploiting Social Network Structure for Person-to-Person Sentiment Analysis , 2014, TACL.

[32]  Aaron Halfaker,et al.  NICE: social translucence through UI intervention , 2011, Int. Sym. Wikis.

[33]  Scott Counts,et al.  Identifying topical authorities in microblogs , 2011, WSDM '11.

[34]  Jack Sidnell,et al.  Conversation Analysis: List of tables , 2009 .

[35]  Munmun De Choudhury,et al.  The Language of Social Support in Social Media and Its Effect on Suicidal Ideation Risk , 2017, ICWSM.

[36]  D. E. Allen,et al.  Conversation analysis : the sociology of talk , 1978 .

[37]  Jure Leskovec,et al.  Community Interaction and Conflict on the Web , 2018, WWW.

[38]  M. de Rijke,et al.  Predicting the volume of comments on online news stories , 2009, CIKM.

[39]  E. Goffman,et al.  Forms of talk , 1982 .

[40]  Mari Ostendorf,et al.  A Factored Neural Network Model for Characterizing Online Discussions in Vector Space , 2017, EMNLP.

[41]  Vicenç Gómez,et al.  Statistical analysis of the social network and discussion threads in slashdot , 2008, WWW.

[42]  Michael S. Bernstein,et al.  Anyone Can Become a Troll: Causes of Trolling Behavior in Online Discussions , 2017, CSCW.

[43]  Sean A. Munson,et al.  Bursting your (filter) bubble: strategies for promoting diverse exposure , 2013, CSCW '13.

[44]  Rafael E. Banchs,et al.  The structure of political discussion networks: a model for the analysis of online deliberation , 2010, J. Inf. Technol..

[45]  Cristian Danescu-Niculescu-Mizil,et al.  Conversational Markers of Constructive Discussions , 2016, NAACL.

[46]  Ravi Kumar,et al.  Dynamics of conversations , 2010, KDD.

[47]  Mattia Samory,et al.  Quotes Reveal Community Structure and Interaction Dynamics , 2017, CSCW.

[48]  Susan T. Dumais,et al.  Mark my words!: linguistic style accommodation in social media , 2011, WWW.

[49]  Aristides Gionis,et al.  Quantifying Controversy on Social Media , 2018, ACM Trans. Soc. Comput..

[50]  Jacob Eisenstein,et al.  You Can't Stay Here , 2017, Proc. ACM Hum. Comput. Interact..

[51]  P. Resnick,et al.  Building Successful Online Communities: Evidence-Based Social Design , 2012 .

[52]  Amy X. Zhang,et al.  Characterizing Online Discussion Using Coarse Discourse Sequences , 2017, Proceedings of the International AAAI Conference on Web and Social Media.

[53]  Jon M. Kleinberg,et al.  Characterizing and curating conversation threads: expansion, focus, volume, re-entry , 2013, WSDM.

[54]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[55]  Michel Marcoccia On-line polylogues: conversation structure and participation framework in internet newsgroups , 2004 .

[56]  Alan Ritter,et al.  Unsupervised Modeling of Twitter Conversations , 2010, NAACL.

[57]  Cristian Danescu-Niculescu-Mizil,et al.  WikiConv: A Corpus of the Complete Conversational History of a Large Online Collaborative Community , 2018, EMNLP.

[58]  Aniket Kittur,et al.  He says, she says: conflict and coordination in Wikipedia , 2007, CHI.

[59]  Peter Ohler,et al.  Quid pro quo in Web 2.0. Connecting personality traits and Facebook usage intensity to uncivil commenting intentions in public online discussions , 2018, Comput. Hum. Behav..

[60]  Vicenç Gómez,et al.  Detecting Platform Effects in Online Discussions , 2017 .

[61]  E. Schegloff,et al.  A simplest systematics for the organization of turn-taking for conversation , 1974 .

[62]  S. Kiesler,et al.  Applying Common Identity and Bond Theory to Design of Online Communities , 2007 .

[63]  Wolfgang Nejdl,et al.  How useful are your comments?: analyzing and predicting youtube comments and comment ratings , 2010, WWW '10.

[64]  Dominic DiFranzo,et al.  X R D S @bullet S P R I N G 2 0 17 @bullet V O L . 2 3 @bullet N O . 3 Filter Bubbles and Fake News , 2022 .

[65]  David García,et al.  Generative models of online discussion threads: state of the art and research challenges , 2017, Journal of Internet Services and Applications.

[66]  Yana Volkovich,et al.  When the Wikipedians Talk: Network and Tree Structure of Wikipedia Discussion Pages , 2011, ICWSM.

[67]  R. Bales A set of categories for the analysis of small group interaction. , 1950 .

[68]  David J. Atkin,et al.  Online News Discussions , 2017 .

[69]  Mao Ye,et al.  From user comments to on-line conversations , 2012, KDD.

[70]  Ken-ichi Kawarabayashi,et al.  Reply trees in Twitter: data analysis and branching process models , 2016, Social Network Analysis and Mining.

[71]  Jae Kook Lee,et al.  Filtering out the other side? Cross-cutting and like-minded discussions on social networking sites , 2017, New Media Soc..

[72]  Mor Naaman,et al.  Towards quality discourse in online news comments , 2011, CSCW.

[73]  E. Schegloff,et al.  The preference for self-correction in the organization of repair in conversation , 1977 .

[74]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[75]  Jimeng Sun,et al.  MetaFac: community discovery via relational hypergraph factorization , 2009, KDD.

[76]  Subhajit Sanyal,et al.  Multi-objective ranking of comments on web , 2012, WWW.

[77]  Michael Gamon,et al.  Predicting Responses to Microblog Posts , 2012, NAACL.

[78]  Kristina Lerman,et al.  Leveraging Position Bias to Improve Peer Recommendation , 2014, PloS one.