Variations in Lipopolysaccharide Synthesis Affect Formation of Azospirillum baldaniorum Biofilms in planta at Elevated Copper Content

[1]  F. Cassan,et al.  Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. , 2020, International journal of systematic and evolutionary microbiology.

[2]  Y. Filip’echeva,et al.  Plasmid gene for putative integral membrane protein affects formation of lipopolysaccharide and motility in Azospirillum brasilense Sp245 , 2020, Folia Microbiologica.

[3]  A. Shelud’ko,et al.  Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245 , 2020, Journal of basic microbiology.

[4]  E. G. Ponomareva,et al.  Cell Ultrastructure in Azospirillum brasilense Biofilms , 2020, Microbiology.

[5]  Y. Filip’echeva,et al.  Characterization of Carbohydrate-Containing Components of Azospirillum brasilense Sp245 Biofilms , 2018, Microbiology.

[6]  S. Fendrihan,et al.  AZOSPIRILLUM STRAINS AS BIOFERTILIZERS AND BIOCONTROL AGENTS -A PRACTICAL REVIEW , 2017 .

[7]  H. M. A. El-Samad The Biphasic Role of Cupper and Counteraction with Azospirillum brasilense Application on Growth, Metabolities, Osmotic Pressure and Mineral of Wheat Plant , 2017 .

[8]  E. Banchio,et al.  Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia , 2016, Materials.

[9]  A. Prilipov,et al.  Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245 , 2015, Russian Journal of Genetics.

[10]  H. I. Tak,et al.  Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. , 2013, Reviews of environmental contamination and toxicology.

[11]  S. Burdman,et al.  Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. , 2012, FEMS microbiology letters.

[12]  A. Shelud’ko,et al.  Effect of genomic rearrangement on heavy metal tolerance in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245 , 2011, Folia Microbiologica.

[13]  A. Shelud’ko,et al.  Wheat root colonization by Azospirillum brasilense strains with different motility , 2010, Microbiology.

[14]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[15]  B. Lugtenberg,et al.  Plant-growth-promoting rhizobacteria. , 2009, Annual review of microbiology.

[16]  L. Petrova,et al.  The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense , 2008, Microbiology.

[17]  Zhenli He,et al.  Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils , 2007, Journal of Zhejiang University SCIENCE B.

[18]  M. Su,et al.  Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. , 2006, Bioresource technology.

[19]  P. Tarantilis,et al.  Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. , 2005, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[20]  L. Matora,et al.  Antigenic Identity of the Capsule Lipopolysaccharides, Exopolysaccharides, and O-Specific Polysaccharides in Azospirillum brasilense , 2002, Microbiology.

[21]  S. Konnova,et al.  Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245. , 2002, Carbohydrate research.

[22]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[23]  G. Herndl,et al.  Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton , 1998 .

[24]  S. Burdman,et al.  Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. , 1998, Microbiology.

[25]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[26]  V. Baldani,et al.  Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat , 1983 .

[27]  J. M. Day,et al.  Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites , 1976 .