Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting
暂无分享,去创建一个
[1] J. Besag. Statistical Analysis of Non-Lattice Data , 1975 .
[2] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[3] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .
[4] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[5] L. Brown. Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .
[6] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[7] L. Younes. Estimation and annealing for Gibbsian fields , 1988 .
[8] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[9] John D. Lafferty,et al. Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Robert D. Nowak,et al. Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..
[11] Michael I. Jordan. Graphical Models , 2003 .
[12] Benjamin Van Roy,et al. An Analysis of Turbo Decoding with Gaussian Densities , 1999, NIPS.
[13] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[14] Yair Weiss,et al. Correctness of Local Probability Propagation in Graphical Models with Loops , 2000, Neural Computation.
[15] J. Yedidia. An Idiosyncratic Journey Beyond Mean Field Theory , 2000 .
[16] Hilbert J. Kappen,et al. Learning in higher order Boltzmann machines using linear response , 2000, Neural Networks.
[17] M. Opper,et al. An Idiosyncratic Journey Beyond Mean Field Theory , 2001 .
[18] William T. Freeman,et al. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.
[19] Tom Minka,et al. A family of algorithms for approximate Bayesian inference , 2001 .
[20] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[21] Sekhar Tatikonda,et al. Loopy Belief Propogation and Gibbs Measures , 2002, UAI.
[22] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[23] Yee Whye Teh,et al. On Improving the Efficiency of the Iterative Proportional Fitting Procedure , 2003, AISTATS.
[24] Martin J. Wainwright,et al. Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment matching , 2003, AISTATS.
[25] Sekhar C. Tatikonda,et al. Convergence of the sum-product algorithm , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).
[26] Hilbert J. Kappen,et al. Approximate Inference and Constrained Optimization , 2002, UAI.
[27] Martin J. Wainwright,et al. Tree-based reparameterization framework for analysis of sum-product and related algorithms , 2003, IEEE Trans. Inf. Theory.
[28] Hilbert J. Kappen,et al. On the properties of the Bethe approximation and loopy belief propagation on binary networks , 2004 .
[29] William T. Freeman,et al. Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[30] Hilbert J. Kappen,et al. Sufficient Conditions for Convergence of Loopy Belief Propagation , 2005, UAI.
[31] John W. Fisher,et al. Loopy Belief Propagation: Convergence and Effects of Message Errors , 2005, J. Mach. Learn. Res..
[32] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[33] Leslie Pack Kaelbling,et al. Learning Static Object Segmentation from Motion Segmentation , 2005, AAAI.
[34] William T. Freeman,et al. Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.
[35] Martin J. Wainwright,et al. A variational principle for graphical models , 2005 .
[36] Andrew McCallum,et al. Piecewise Training for Undirected Models , 2005, UAI.
[37] Martin J. Wainwright,et al. A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.
[38] Wim Wiegerinck. Approximations with Reweighted Generalized Belief Propagation , 2005, AISTATS.
[39] Martin J. Wainwright,et al. Log-determinant relaxation for approximate inference in discrete Markov random fields , 2006, IEEE Transactions on Signal Processing.
[40] Terrence J. Sejnowski,et al. A Variational Principle for Graphical Models , 2007 .
[41] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[42] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .