Modelling the temperature in joint friction of industrial manipulators

In this paper, a new model for joint dynamic friction of industrial robot manipulators is presented. In particular, the effects of the temperature in the joints are considered. A polynomial-based model is proposed and the parameter estimation is performed without the need of a joint temperature sensor. The use of an observer is then proposed to compensate for the uncertainty in the initial estimation of the temperature value. A large experimental campaign show that the model, in spite of the simplifying assumptions made, is effective in estimating the joint temperature and therefore the friction torque during the robot operations, even for values of velocities that have not been previously employed.

[1]  Lőrinc Márton,et al.  Temperature dependent friction estimation: Application to lubricant health monitoring , 2012 .

[2]  Paolo Rocco,et al.  An integral friction model , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Elder Moreira Hemerly,et al.  Active control of flexible one-link manipulators using wavelet networks , 2013, Robotica.

[4]  F. Kennedy,et al.  Frictional Heating and Contact Temperatures , 2000 .

[5]  P. Dahl A Solid Friction Model , 1968 .

[6]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[7]  Antonio Visioli,et al.  On the trajectory tracking control of industrial SCARA robot manipulators , 2002, IEEE Trans. Ind. Electron..

[8]  K. Åström Revisiting the LuGre Model Stick-slip motion and rate dependence , 2011 .

[9]  Maxime Gautier,et al.  A Generic Instrumental Variable Approach for Industrial Robot Identification , 2014, IEEE Transactions on Control Systems Technology.

[10]  M. Ruderman Presliding hysteresis damping of LuGre and Maxwell-slip friction models , 2015 .

[11]  Tao Chen,et al.  A comprehensive experimental setup for identification of friction model parameters , 2016 .

[12]  David L. Trumper,et al.  Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance , 2014 .

[13]  Patrik Axelsson,et al.  Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data , 2014, IEEE/ASME Transactions on Mechatronics.

[14]  Zhao Zhongyu The study of friction variation with temperature in a harmonic drive system : modeling and control , 2006 .

[15]  M. Indri,et al.  Friction Compensation in Robotics: an Overview , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  H. Dankowicz On the modeling of dynamic friction phenomena , 1999 .

[17]  F. Al-Bender,et al.  A generalized Maxwell-slip friction model appropriate for control purposes , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[18]  Martin Webster,et al.  Lubrication Fundamentals, Revised and Expanded , 2016 .

[19]  K.J. Astrom,et al.  Revisiting the LuGre friction model , 2008, IEEE Control Systems.

[20]  Antonio Visioli,et al.  Friction compensation in hybrid force/velocity control of industrial manipulators , 2006, IEEE Transactions on Industrial Electronics.

[21]  Torgny Brogårdh,et al.  An extended friction model to capture load and temperature effects in robot joints , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Leonid B. Freidovich,et al.  LuGre-Model-Based Friction Compensation , 2010, IEEE Transactions on Control Systems Technology.

[23]  Antonio Visioli,et al.  Friction modeling with temperature effects for industrial robot manipulators , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  Wang Sanxiu,et al.  Adaptive Friction Compensation of Robot Manipulator , 2011 .

[25]  Hubert Gattringer,et al.  A persistent method for parameter identification of a seven-axes manipulator , 2015, Robotica.

[26]  V. van Geffen,et al.  A study of friction models and friction compensation , 2009 .

[27]  T. Piątkowski GMS friction model approximation , 2014 .

[28]  T.H. Lee,et al.  Adaptive friction compensation of servo mechanisms , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[29]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[30]  Lorenzo Molinari Tosatti,et al.  Optimal robot dynamics local identification using genetic-based path planning in workspace subregions , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[31]  Giovanni Legnani,et al.  Robot dynamic model identification through excitation trajectories minimizing the correlation influence among essential parameters , 2014, 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO).

[32]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[33]  T. Piatkowski,et al.  Dahl and LuGre dynamic friction models — The analysis of selected properties , 2014 .

[34]  Anders Robertsson,et al.  Sensorless friction-compensated passive lead-through programming for industrial robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[35]  Jang-Myung Lee,et al.  Robust adaptive deadzone and friction compensation of robot manipulator using RWCMAC network , 2011 .

[36]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[37]  A. C. Bittencourt,et al.  Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects , 2012 .

[38]  Anders Robertsson,et al.  Modeling and identification of position and temperature dependent friction phenomena without temperature sensing , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).