On the structure of the transition disk around TW Hydrae

Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at di erent wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the di erent faces of physical processes going on in disks, such as dust growth and planet formation. Aims. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model di erences. Methods. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner 3 AU, and (2) the largest grains (>100 m) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the di erent regimes of dust-grain growth, respectively. Conclusions. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains di ers from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.

[1]  T. Henning,et al.  Resolving HD 100546 disc in the mid-infrared: Small inner disc and asymmetry near the gap , 2012, 1203.6265.

[2]  E. Bergin,et al.  Imaging of the CO Snow Line in a Solar Nebula Analog , 2013, Science.

[3]  Gijs D. Mulders,et al.  Planet or brown dwarf? Inferring the companion mass in HD 100546 from the wall shape using mid-infrared interferometry , 2013, 1306.4264.

[4]  A. J. Weinberger,et al.  THE 0.5–2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU , 2013, 1306.2969.

[5]  G. Blake,et al.  EVIDENCE FOR A SNOW LINE BEYOND THE TRANSITIONAL RADIUS IN THE TW Hya PROTOPLANETARY DISK , 2013, 1302.3655.

[6]  Geoffrey A. Blake,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[7]  Dimitri Mawet,et al.  Flows of gas through a protoplanetary gap , 2013, Nature.

[8]  Maarten Baes,et al.  FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code , 2012, 1212.0538.

[9]  C. Dominik,et al.  Why circumstellar disks are so faint in scattered light: the case of HD 100546 , 2012, 1210.4132.

[10]  C. A. Grady,et al.  SPIRAL ARMS IN THE ASYMMETRICALLY ILLUMINATED DISK OF MWC 758 AND CONSTRAINTS ON GIANT PLANETS , 2012, 1212.1466.

[11]  L. Mundy,et al.  CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK , 2012, 1210.5252.

[12]  C. Dullemond,et al.  KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK , 2012, 1208.1285.

[13]  D. Wilner,et al.  Grain growth signatures in the protoplanetary discs of Chamaeleon and Lupus , 2012, 1207.0260.

[14]  U. Gorti,et al.  FREE–FREE EMISSION AND RADIO RECOMBINATION LINES FROM PHOTOEVAPORATING DISKS , 2012, 1205.1079.

[15]  H. Kataza,et al.  MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP , 2012, 1204.5364.

[16]  P. Tuthill,et al.  NEW SPATIALLY RESOLVED MID-INFRARED OBSERVATIONS OF THE TRANSITIONAL DISK TW Hya AND TENTATIVE EVIDENCE FOR A SELF-LUMINOUS COMPANION , 2012, 1204.0550.

[17]  O. Guyon,et al.  THE MISSING CAVITIES IN THE SEEDS POLARIZED SCATTERED LIGHT IMAGES OF TRANSITIONAL PROTOPLANETARY DISKS: A GENERIC DISK MODEL , 2012, 1203.1612.

[18]  B. Ercolano,et al.  A simple model for the evolution of the dust population in protoplanetary disks , 2012, 1201.5781.

[19]  Thuringer Landessternwarte Tautenburg,et al.  Kinematics of Ionized Gas at 0.01 AU of TW Hya , 2012, 1201.3623.

[20]  J. Augereau,et al.  An icy Kuiper-Belt around the young solar-type star HD 181327 , 2011, 1112.3398.

[21]  Jonathan P. Williams,et al.  THE TW Hya DISK AT 870 μm: COMPARISON OF CO AND DUST RADIAL STRUCTURES , 2011, 1111.5037.

[22]  John C. Pearson,et al.  Detection of the Water Reservoir in a Forming Planetary System , 2011, Science.

[23]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[24]  T. Henning,et al.  THE 2008 OUTBURST OF EX Lup—SILICATE CRYSTALS IN MOTION , 2011, 1110.3754.

[25]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. III. YOUNG MOVING GROUPS , 2011, 1109.5900.

[26]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[27]  A. Lagrange,et al.  Sparse aperture masking at the VLT. I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569 , 2011, 1107.1426.

[28]  B. J. Butler,et al.  THE EXPANDED VERY LARGE ARRAY: A NEW TELESCOPE FOR NEW SCIENCE , 2011, 1106.0532.

[29]  A. Dutrey,et al.  A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties , 2011 .

[30]  U. Gorti,et al.  THE PHOTOEVAPORATIVE WIND FROM THE DISK OF TW Hya , 2011, 1105.0045.

[31]  U. Gorti,et al.  EMISSION LINES FROM THE GAS DISK AROUND TW HYDRA AND THE ORIGIN OF THE INNER HOLE , 2011, 1104.4806.

[32]  K. Wood,et al.  The standard model of low-mass star formation applied to massive stars: multiwavelength modelling of IRAS 20126+4104 , 2011, 1104.3580.

[33]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[34]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[35]  E. Kokubo,et al.  DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE , 2011, 1102.4408.

[36]  Rafael Millan-Gabet,et al.  RADIAL STRUCTURE IN THE TW Hya CIRCUMSTELLAR DISK , 2011 .

[37]  J. Bouwman,et al.  The complex circumstellar environment of HD 142527 , 2011, 1101.5719.

[38]  D. Wilner,et al.  EMPIRICAL CONSTRAINTS ON TURBULENCE IN PROTOPLANETARY ACCRETION DISKS , 2010, 1011.3826.

[39]  Barbara Ercolano,et al.  Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation , 2010, 1010.0826.

[40]  M. Min,et al.  DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS—THE SPITZER VIEW , 2010, 1008.0083.

[41]  T. Harrison,et al.  LOW-MASS ECLIPSING BINARIES IN THE INITIAL KEPLER DATA RELEASE , 2010, 1007.4295.

[42]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[43]  J. Carpenter,et al.  INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau , 2010, 1003.4318.

[44]  Munetaka Ueno,et al.  The AKARI/IRC mid-infrared all-sky survey , 2010, 1003.0270.

[45]  U. Gorti,et al.  SPITZER SPECTROSCOPY OF THE TRANSITION OBJECT TW Hya , 2010, 1002.4623.

[46]  C. Dullemond,et al.  Gas- and dust evolution in protoplanetary disks , 2010, 1002.0335.

[47]  C. Dominik,et al.  Full two-dimensional radiative transfer modelling of the transitional disk LkCa 15 , 2010, 1001.2146.

[48]  B. Ercolano,et al.  Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs , 2009, 0909.4309.

[49]  T. Henning,et al.  Dust Processing and Mineralogy in Protoplanetary Accretion Disks , 2009, 0911.1010.

[50]  C. Dullemond,et al.  TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR , 2009, 0909.1836.

[51]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[52]  J. Canto,et al.  A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm) , 2009, 0905.3712.

[53]  M. Min,et al.  Radiative transfer in very optically thick circumstellar disks , 2009, 0902.3092.

[54]  L. Mundy,et al.  GRAIN GROWTH AND DENSITY DISTRIBUTION OF THE YOUNGEST PROTOSTELLAR SYSTEMS , 2009, 0902.2008.

[55]  D. Wilner,et al.  Large grains in discs around young stars: ATCA observations of WW Chamaeleontis, RU Lupi and CS Chamaeleontis , 2008, 0812.3849.

[56]  D. Queloz,et al.  TW Hydrae: evidence of stellar spots instead of a Hot Jupiter , 2008, 0808.2386.

[57]  D. Padgett,et al.  Probing dust grain evolution in IM Lupi's circumstellar disc. Multi-wavelength observations and mo , 2008, 0808.0619.

[58]  M. Kürster,et al.  A young massive planet in a star–disk system , 2008, Nature.

[59]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[60]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[61]  T. Henning,et al.  High spatial resolution mid-infrared observations of the low-mass young star TW Hydrae , 2007, 0707.0193.

[62]  E. Chiang,et al.  Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability , 2007, 0706.1241.

[63]  N. Calvet,et al.  An Inner Hole in the Disk around TW Hydrae Resolved in 7 mm Dust Emission , 2007, 0704.2422.

[64]  L. A. Hillenbrand,et al.  Spatially Resolving the Inner Disk of TW Hydrae , 2006, astro-ph/0601034.

[65]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[66]  L. Hartmann,et al.  Toward Planetesimals in the Disk around TW Hydrae: 3.5 Centimeter Dust Emission , 2005, astro-ph/0506644.

[67]  Ucla,et al.  Exploring Terrestrial Planet Formation in the TW Hydrae Association , 2005, astro-ph/0506291.

[68]  G. Fazio,et al.  IRAC Observations of Taurus Pre-Main-Sequence Stars , 2005, astro-ph/0505323.

[69]  A. Isella,et al.  The shape of the inner rim in proto-planetary disks , 2005, astro-ph/0503635.

[70]  M. Min,et al.  A 10 μm spectroscopic survey of Herbig Ae star disks: Grain growth and crystallization , 2005, astro-ph/0503507.

[71]  J. Hovenier,et al.  Modeling optical properties of cosmic dust grains using a distribution of hollow spheres , 2005, astro-ph/0503068.

[72]  K. Rice,et al.  Protostars and Planets V , 2005 .

[73]  Elizabeth A. Lada,et al.  Protostars and Planets V Oral Program , 2005 .

[74]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[75]  A. Weinberger,et al.  Spatially Resolved Spectroscopy and Coronagraphic Imaging of the TW Hydrae Circumstellar Disk , 2004, astro-ph/0410251.

[76]  G. Blake,et al.  Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.

[77]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Flaring vs . self-shadowed disks : The SEDs of Herbig Ae / Be stars , 2004 .

[78]  Heidelberg,et al.  NACO polarimetric differential imaging of TW Hya A sharp look at the closest T Tauri disk , 2003, astro-ph/0311194.

[79]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method , 2003 .

[80]  C. M. Wright,et al.  Disks around the Young Stars TW Hydrae and HD 100546 Imaged at 3.4 Millimeters with the Australia Telescope Compact Array , 2003 .

[81]  A. Walsh,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002, astro-ph/0201425.

[82]  INFRARED VIEWS OF THE TW HYDRA DISK , .

[83]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[84]  R. H. Brown,et al.  Near-Infrared Coronagraphic Imaging of the Circumstellar Disk around TW Hydrae , 2001, astro-ph/0103458.

[85]  John E. Krist,et al.  WFPC2 Images of a Face-on Disk Surrounding TW Hydrae , 2000 .

[86]  D. Wilner,et al.  VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hydrae , 2000, The Astrophysical journal.

[87]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[88]  Th. Henning,et al.  WWW database of optical constants for astronomy , 1999 .

[89]  N. Calvet,et al.  Accretion Disks around Young Objects. I. The Detailed Vertical Structure , 1998, astro-ph/9806060.

[90]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[91]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[92]  T. Henning,et al.  A Laboratory Approach to the Interstellar Sulfide Dust Problem , 1994 .

[93]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[94]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[95]  L. Mundy,et al.  Observations of Circumstellar Disks at Centimeter Wavelengths , 1993 .

[96]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[97]  David A. Weintraub,et al.  Submillimeter measurements of T Tauri and FU Orionis stars , 1989 .

[98]  G. Helou,et al.  Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog , 1988 .

[99]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .

[100]  G. Thomas Infrared Astronomical Satellite (IRAS). , 1986 .

[101]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[102]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[103]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[104]  B. Piriou,et al.  Infrared Reflectivity and Raman Scattering of Mg2SiO4 Single Crystal , 1973 .