Aspects of large random Markov kernels

We briefly review certain asymptotic properties of random Markov kernels on a finite state space. These models can be thought of as finite Markov chains in random environment. Here, the asymptotics are taken with respect to the cardinality of the state space. We study, for instance, the behaviour of the normalized invariant vector, the global behaviour of the spectrum and the extremal eigenvalues. The analysis of these models involves Random Matrix Theory, convex compact polytopes and finite graphs with random weights. We also give some open problems related to these models.

[1]  J. P. Bouchaud,et al.  Diffusion anormale dans les milieux désordonnés : piégeage, corrélations et théorèmes de la limite centrale , 1987 .

[2]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[3]  L. Mirsky,et al.  Results and problems in the theory of doubly-stochastic matrices , 1963 .

[4]  G. Biroli,et al.  On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.

[5]  Eric Kostlan,et al.  On the spectra of Gaussian matrices , 1992 .

[6]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[7]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[8]  The characteristic polynomial of a random permutation matrix , 2000 .

[9]  A. Bovier,et al.  Spectral analysis of Sinai's walk for small eigenvalues. , 2005, math/0509385.

[10]  Marvin Marcus,et al.  DIAGONALS OF DOUBLY STOCHASTIC MATRICES , 1959 .

[11]  General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.

[12]  C. Tracy,et al.  The Distribution of the Largest Eigenvalue in the Gaussian Ensembles: β = 1, 2, 4 , 1997, solv-int/9707001.

[13]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[14]  Djalil Chafaï The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..

[15]  A. Faggionato,et al.  Spectral characterization of aging: The REM-like trap model , 2004, math/0508486.

[16]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[17]  S. Mendelson,et al.  A probabilistic approach to the geometry of the ℓᵨⁿ-ball , 2005, math/0503650.

[18]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[19]  Guillaume Aubrun Random Points in the Unit Ball of ℓnp , 2006 .

[20]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[21]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[23]  Kelly Wieand,et al.  Eigenvalue distributions of random permutation matrices , 2000 .

[24]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[25]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[26]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[27]  Stephen P. Boyd,et al.  Symmetry Analysis of Reversible Markov Chains , 2005, Internet Math..

[28]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[29]  Gregor Tanner,et al.  Unitary-stochastic matrix ensembles and spectral statistics , 2001, nlin/0104014.

[30]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[31]  Wojciech Tadej,et al.  Birkhoff’s Polytope and Unistochastic Matrices, N = 3 and N = 4 , 2005 .

[32]  Peter Keevash,et al.  The characteristic polynomial of a random permutation matrix , 2000 .

[33]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[34]  Y. Peres,et al.  Determinantal Processes and Independence , 2005, math/0503110.

[35]  B. Rider A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  Michael Neumann,et al.  Distribution of Subdominant Eigenvalues of Matrices with Random Rows , 2002, SIAM J. Matrix Anal. Appl..

[38]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains , 2008 .

[39]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.

[40]  Michael Neumann,et al.  Distribution of Subdominant Eigenvalues of Random Matrices , 2000 .

[41]  D. Boivin,et al.  Spectral homogenization of reversible random walks on Zd in a random environment , 2003 .

[42]  Brian Rider,et al.  Order Statistics and Ginibre's Ensembles , 2004 .

[43]  R. Arratia,et al.  Poisson Process Approximations for the Ewens Sampling Formula , 1992 .

[44]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[45]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[46]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[47]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.