Aspects of large random Markov kernels
暂无分享,去创建一个
[1] J. P. Bouchaud,et al. Diffusion anormale dans les milieux désordonnés : piégeage, corrélations et théorèmes de la limite centrale , 1987 .
[2] Anthony Unwin,et al. Reversibility and Stochastic Networks , 1980 .
[3] L. Mirsky,et al. Results and problems in the theory of doubly-stochastic matrices , 1963 .
[4] G. Biroli,et al. On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.
[5] Eric Kostlan,et al. On the spectra of Gaussian matrices , 1992 .
[6] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .
[7] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[8] The characteristic polynomial of a random permutation matrix , 2000 .
[9] A. Bovier,et al. Spectral analysis of Sinai's walk for small eigenvalues. , 2005, math/0509385.
[10] Marvin Marcus,et al. DIAGONALS OF DOUBLY STOCHASTIC MATRICES , 1959 .
[11] General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.
[12] C. Tracy,et al. The Distribution of the Largest Eigenvalue in the Gaussian Ensembles: β = 1, 2, 4 , 1997, solv-int/9707001.
[13] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[14] Djalil Chafaï. The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..
[15] A. Faggionato,et al. Spectral characterization of aging: The REM-like trap model , 2004, math/0508486.
[16] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[17] S. Mendelson,et al. A probabilistic approach to the geometry of the ℓᵨⁿ-ball , 2005, math/0503650.
[18] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[19] Guillaume Aubrun. Random Points in the Unit Ball of ℓnp , 2006 .
[20] E. Seneta. Non-negative Matrices and Markov Chains , 2008 .
[21] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[23] Kelly Wieand,et al. Eigenvalue distributions of random permutation matrices , 2000 .
[24] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[25] A. Dembo,et al. Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.
[26] G. B. Arous,et al. The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.
[27] Stephen P. Boyd,et al. Symmetry Analysis of Reversible Markov Chains , 2005, Internet Math..
[28] Antonio Auffinger,et al. Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.
[29] Gregor Tanner,et al. Unitary-stochastic matrix ensembles and spectral statistics , 2001, nlin/0104014.
[30] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.
[31] Wojciech Tadej,et al. Birkhoff’s Polytope and Unistochastic Matrices, N = 3 and N = 4 , 2005 .
[32] Peter Keevash,et al. The characteristic polynomial of a random permutation matrix , 2000 .
[33] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[34] Y. Peres,et al. Determinantal Processes and Independence , 2005, math/0503110.
[35] B. Rider. A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .
[36] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[37] Michael Neumann,et al. Distribution of Subdominant Eigenvalues of Matrices with Random Rows , 2002, SIAM J. Matrix Anal. Appl..
[38] Charles Bordenave,et al. Spectrum of large random reversible Markov chains , 2008 .
[39] Charles Bordenave,et al. Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.
[40] Michael Neumann,et al. Distribution of Subdominant Eigenvalues of Random Matrices , 2000 .
[41] D. Boivin,et al. Spectral homogenization of reversible random walks on Zd in a random environment , 2003 .
[42] Brian Rider,et al. Order Statistics and Ginibre's Ensembles , 2004 .
[43] R. Arratia,et al. Poisson Process Approximations for the Ewens Sampling Formula , 1992 .
[44] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[45] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[46] M. Rosenblatt. Markov Processes, Structure and Asymptotic Behavior , 1971 .
[47] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.