Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach—Part 1

The efficacy of the multimodel framework (MMF) in modeling and identification of complex, nonlinear, and uncertain systems has been widely recognized in the literature owing to its simplicity, transparency, and mathematical tractability, allowing the use of well-known modeling analysis and control design techniques. The approach proved to be effective in addressing some of the shortcomings of other modeling techniques such as those based on a single nonlinear autoregressive network with exogenous inputs model or neural networks. A great number of researchers have contributed to this active field. Due to the significant amount of contributions and the lack of a recent survey, the review of recent developments in this field is vital. In this two-part paper, we attempt to provide a comprehensive coverage of the multimodel approach for modeling and identification of complex systems. The study contains a classification of different methods, the challenges encountered, as well as recent applications of MMF in various fields. Part 1 of this paper presents an overview of MMF for modeling and identification of nonlinear systems as well as the review of recent developments in the partitioning strategies employed.

[1]  Kazuo Tanaka,et al.  A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions , 2007, IEEE Transactions on Fuzzy Systems.

[2]  Tor Arne Johansen,et al.  Off-equilibrium linearisation and design of gain-scheduled control with application to vehicle speed control , 1998 .

[3]  Gordon Lightbody,et al.  Nonlinear system identification: From multiple-model networks to Gaussian processes , 2008, Eng. Appl. Artif. Intell..

[4]  A. Gretton,et al.  Support vector regression for black-box system identification , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[5]  J. Ragot,et al.  On the stability analysis of multiple model systems , 2001, 2001 European Control Conference (ECC).

[6]  Mehdi Karrari,et al.  An iterative approach to determine the complexity of local models for robust identification of nonlinear systems , 2012 .

[7]  S. Mukhopadhyay,et al.  MVEM-Based Fault Diagnosis of Automotive Engines Using Dempster–Shafer Theory and Multiple Hypotheses Testing , 2015, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[8]  Oliver Nelles,et al.  On the smoothness in local model networks , 2009, 2009 American Control Conference.

[9]  Biao Huang,et al.  Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm , 2013 .

[10]  Kamel Abderrahim,et al.  New Method for the Systematic Determination of the Model's Base of Time Varying Delay System , 2012 .

[11]  Ganapati Panda,et al.  Robust identification of nonlinear complex systems using low complexity ANN and particle swarm optimization technique , 2011, Expert Syst. Appl..

[12]  Anton F. M. Verbraak,et al.  Estimation of respiratory parameters via fuzzy clustering , 2001, Artif. Intell. Medicine.

[13]  Ravindra D. Gudi,et al.  Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space , 2003 .

[14]  Oliver Nelles,et al.  Increasing the Performance of a Training Algorithm for Local Model Networks , 2012 .

[15]  B. Abdennour Ridha,et al.  A systematic determination approach of a models' base for uncertain systems: experimental validation , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[16]  Faouzi M'Sahli,et al.  A multimodel approach for a nonlinear system based on neural network validity , 2011, Int. J. Intell. Comput. Cybern..

[17]  Tor Arne Johansen,et al.  State-Space Modeling using Operating Regime Decomposition and Local Models , 1993 .

[18]  Biao Huang,et al.  Multiple model LPV approach to nonlinear process identification with EM algorithm , 2011 .

[19]  W. Leithead,et al.  Analytic framework for blended multiple model systems using linear local models , 1999 .

[20]  Kudret Demirli,et al.  Higher order fuzzy system identification using subtractive clustering , 2000, J. Intell. Fuzzy Syst..

[21]  Balazs Feil,et al.  Cluster Analysis for Data Mining and System Identification , 2007 .

[22]  Stefan Jakubek,et al.  A local neuro-fuzzy network for high-dimensional models and optimization , 2006, Eng. Appl. Artif. Intell..

[23]  Dimiter Driankov,et al.  A Takagi-Sugeno fuzzy gain-scheduler , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[24]  Mojtaba Ahmadieh Khanesar,et al.  Subspace identification of dynamical neurofuzzy system using LOLIMOT , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[25]  Kudret Demirli,et al.  Subtractive clustering based modeling of job sequencing with parametric search , 2003, Fuzzy Sets Syst..

[26]  Shuning Wang,et al.  Adaptive hinging hyperplanes and its applications in dynamic system identification , 2009, Autom..

[27]  Shuning Wang,et al.  Operation optimization for centrifugal chiller plants using continuous piecewise linear programming , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[28]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[29]  B. Marx,et al.  Nonlinear system identification using heterogeneous multiple models , 2013, Int. J. Appl. Math. Comput. Sci..

[30]  Jiashu Zhang,et al.  Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network , 2009, Neurocomputing.

[31]  Mekki Ksouri,et al.  Multimodel Approach using Neural Networks for Complex Systems Modeling and Identification , 2008 .

[32]  Naixue Xiong,et al.  Design and Analysis of Multimodel-Based Anomaly Intrusion Detection Systems in Industrial Process Automation , 2015, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[33]  Stig Moberg,et al.  Nonlinear gray-box identification using local models applied to industrial robots , 2011, Autom..

[34]  Ronald R. Yager,et al.  A Soft Computing Approach to Controlling Emissions Under Imperfect Sensors , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[35]  Wen Tan,et al.  Operating point selection in multimodel controller design , 2004, Proceedings of the 2004 American Control Conference.

[36]  Petr Chalupa,et al.  Modelling and Predictive control of a Nonlinear System Using Local Model Network , 2011 .

[37]  T. Johansen,et al.  A NARMAX model representation for adaptive control based on local models , 1992 .

[38]  Leo Breiman,et al.  Hinging hyperplanes for regression, classification, and function approximation , 1993, IEEE Trans. Inf. Theory.

[39]  Rolf Isermann,et al.  Local basis function networks for identification of a turbocharger , 1996 .

[40]  Shuning Wang,et al.  Nonlinear model predictive control using adaptive hinging hyperplanes model , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[41]  S. Kawamoto,et al.  An approach to stability analysis of second order fuzzy systems , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[42]  George W. Irwin,et al.  Comparison of two construction algorithms for local model networks , 2002, Int. J. Syst. Sci..

[43]  Jus Kocijan,et al.  Dynamical systems identification using Gaussian process models with incorporated local models , 2011, Eng. Appl. Artif. Intell..

[44]  K. Burnham,et al.  EXTENDED GLOBAL TOTAL LEAST SQUARE APPROACH TO MULTIPLE-MODEL IDENTIFICATION , 2005 .

[45]  Eugene Coyle,et al.  DISCRETE-TIME VELOCITY-BASED MULTIPLE MODEL NETWORKS , 2002 .

[46]  R. Pearson,et al.  Block‐oriented NARMAX models with output multiplicities , 1998 .

[47]  Stefan Jakubek,et al.  Identification of Neurofuzzy Models Using GTLS Parameter Estimation , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[48]  Changhua Hu,et al.  A VELOCITY-BASED LPV MODELING AND CONTROL FRAMEWORK FOR AN AIRBREATHING HYPERSONIC VEHICLE , 2011 .

[49]  Igor Skrjanc,et al.  Nonlinear System Identification by Gustafson–Kessel Fuzzy Clustering and Supervised Local Model Network Learning for the Drug Absorption Spectra Process , 2011, IEEE Transactions on Neural Networks.

[50]  Mohamed Benrejeb,et al.  A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms , 2010, Eng. Appl. Artif. Intell..

[51]  Rolf Isermann,et al.  Local Linear Model Trees (LOLIMOT) Toolbox for Nonlinear System Identification , 2000 .

[52]  Hiroshi Kashiwagi,et al.  Identification of Volterra Kernels of Nonlinear Van de Vusse Reactor , 2001 .

[53]  David A. Nash,et al.  Simulation of self-similarity in network utilization patterns as a precursor to automated testing of intrusion detection systems , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[54]  M.J.G. van de Molengraft,et al.  Polytopic linear modelling of a class of nonlinear systems : an automated model generating method , 2000 .

[55]  Yucai Zhu,et al.  Identification of multi-model LPV models with two scheduling variables , 2012 .

[56]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[57]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[58]  O. Nelles Axes-oblique partitioning strategies for local model networks , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[59]  P. Pucar,et al.  Smooth Hinging Hyperplanes - An Alternative to Neural Nets , 1995 .

[60]  Tor Arne Johansen,et al.  Operating regime based process modeling and identification , 1997 .

[61]  Frank L. Lewis,et al.  Multimodel neural networks identification and failure detection of nonlinear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[62]  Shi-Shang Jang,et al.  Development of a Novel Soft Sensor Using a Local Model Network with an Adaptive Subtractive Clustering Approach , 2010 .

[63]  B. Araabi,et al.  A Learning Algorithm for Local Linear Neuro-fuzzy Models with Self-construction through Merge & Split , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[64]  Tor Arne Johansen,et al.  Integrated Multimodel Control of Nonlinear Systems Based on Gap Metric and Stability Margin , 2014 .

[65]  Jingjing Du,et al.  Application of gap metric to model bank determination in multilinear model approach , 2009 .

[66]  Yucai Zhu,et al.  LPV Model Identification Using Blended Linear Models with Given Weightings , 2009 .

[67]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[68]  János Abonyi,et al.  Identification of dynamic systems by hinging hyperplane models , 2007 .

[69]  T. Johansen,et al.  Identification of non-linear system structure and parameters using regime decomposition , 1994, Autom..

[70]  Seyed Hossein Iranmanesh,et al.  A self-similar local neuro-fuzzy model for short-term demand forecasting , 2014, J. Syst. Sci. Complex..

[71]  Didier Maquin,et al.  State estimation of nonlinear systems using multiple model approach , 2009, 2009 American Control Conference.

[72]  Didier Maquin,et al.  State and parameter estimation for nonlinear systems: A Takagi-Sugeno approach , 2013, 2013 American Control Conference.

[73]  Noureddine Zerhouni,et al.  E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications , 2013 .

[74]  Kazuo Tanaka,et al.  An approach to fuzzy control of nonlinear systems: stability and design issues , 1996, IEEE Trans. Fuzzy Syst..

[75]  L. Ljung,et al.  Identification of composite local linear state-space models using a projected gradient search , 2002 .

[76]  Igor Skrjanc,et al.  SUpervised HIerarchical CLUSTering (SUHICLUST) for nonlinear system identification , 2009, 2009 IEEE Symposium on Computational Intelligence in Control and Automation.

[77]  George W. Irwin,et al.  Constructing networks of continuous-time velocity-based models , 2001 .

[78]  George W. Irwin,et al.  On Gaussian Weighting Functions For Velocity-Based Local Model Networks , 2002 .

[79]  Aidan O'Dwyer,et al.  Multiple model networks in non-linear system modelling for control – a review , 2002 .

[80]  Ramli Adnan,et al.  Recent Advancements & Methodologies in System Identification: A Review , 2013 .

[81]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[82]  Gordon Lightbody,et al.  Local Model Network Identification With Gaussian Processes , 2007, IEEE Transactions on Neural Networks.

[83]  R.M. Murray,et al.  A Multi-Model Approach to Identification of Biosynthetic Pathways , 2007, 2007 American Control Conference.

[84]  Stephen A. Billings,et al.  Models for Linear and Nonlinear Systems , 2013 .

[85]  Ping Li,et al.  An integrated state space partition and optimal control method of multi-model for nonlinear systems based on hybrid systems , 2015 .

[86]  Robert Babuska,et al.  Constructing fuzzy models by product space clustering , 1997 .

[87]  P. Bergsten,et al.  Thau-Luenberger observers for TS fuzzy systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[88]  Jesús Carretero,et al.  Multi-model prediction for enhancing content locality in elastic server infrastructures , 2011, 2011 18th International Conference on High Performance Computing.

[89]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[90]  José Ragot,et al.  Model structure simplification of a biological reactor , 2009 .

[91]  Stephen A. Billings,et al.  A new class of wavelet networks for nonlinear system identification , 2005, IEEE Transactions on Neural Networks.

[92]  Jose A. Romagnoli,et al.  Gap Metric Concept and Implications for Multilinear Model-Based Controller Design , 2003 .

[93]  Babak Nadjar Araabi,et al.  PiLiMoT: A Modified Combination of LoLiMoT and PLN Learning Algorithms for Local Linear Neurofuzzy Modeling , 2011 .

[94]  Oliver Nelles,et al.  Local Model Networks for the Optimization of a Tablet Production Process , 2009, AICI.

[95]  Babak Nadjar Araabi,et al.  Particle Swarm Extension to LOLIMOT , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[96]  Ravindra D. Gudi,et al.  Multimodel Decomposition of Nonlinear Dynamics Using Fuzzy Classification and Gap Metric Analysis , 2010 .

[97]  Hongye Su,et al.  Prediction error method for identification of LPV models , 2012 .

[98]  S. M. Sajadifar,et al.  Nonlinear System Identification using Locally Linear Model Tree and Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Industrial Technology.

[99]  Jingjing Du,et al.  Multilinear model decomposition of MIMO nonlinear systems and its implication for multilinear model-based control , 2013 .

[100]  Cuimei Bo,et al.  Fault Diagnosis and Accommodation Based on Online Multi-model for Nonlinear Process , 2006, ICIC.

[101]  J. Ragot,et al.  Estimation of State and Unknown Inputs of a Nonlinear System Represented by a Multiple Model , 2004 .

[102]  Jus Kocijan,et al.  Fixed-structure Gaussian process model , 2009, Int. J. Syst. Sci..

[103]  Hannu T. Toivonen,et al.  Internal model control of nonlinear systems described by velocity-based linearizations , 2003 .

[104]  Kenneth J. Hunt,et al.  Local Model Architectures for Nonlinear Modelling and Control , 1995 .

[105]  Kazuo Tanaka,et al.  Fuzzy modeling via sector nonlinearity concept , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[106]  Thierry-Marie Guerra,et al.  Control Law Proposition for the Stabilization of Discrete Takagi–Sugeno Models , 2009, IEEE Transactions on Fuzzy Systems.

[107]  S. Ernst,et al.  Hinging hyperplane trees for approximation and identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[108]  Jingjing Du,et al.  Multimodel Control of Nonlinear Systems: An Integrated Design Procedure Based on Gap Metric and H∞ Loop Shaping , 2012 .

[109]  Petr Chalupa,et al.  Local Model Networks For Modelling And Predictive Control Of Nonlinear Systems , 2009, ECMS.

[110]  Babak Nadjar Araabi,et al.  Modified LOLIMOT algorithm for nonlinear centralized Kalman filtering fusion , 2007, 2007 10th International Conference on Information Fusion.

[111]  Ravindra D. Gudi,et al.  Multi-model decomposition of nonlinear dynamics using a fuzzy-CART approach , 2005 .

[112]  Pierre Borne,et al.  A Neural Approach of Multimodel Representation of Complex Processes , 2008, Int. J. Comput. Commun. Control.

[113]  Dimitar Filev Fuzzy modeling of complex systems , 1991, Int. J. Approx. Reason..

[114]  Lyle H. Ungar,et al.  A comparison of two nonparametric estimation schemes: MARS and neural networks , 1993 .

[115]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[116]  Biao Huang,et al.  Multiple model based soft sensor development with irregular/missing process output measurement , 2011, 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP).

[117]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[118]  H Guterman,et al.  Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks. , 2002, Biotechnology and bioengineering.

[119]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[120]  Xavier Bombois,et al.  Optimal experimental design for LPV identification using a local approach , 2009 .

[121]  Zuhua Xu,et al.  A method of LPV model identification for control , 2008 .

[122]  O. Nelles,et al.  Polynomial model tree (POLYMOT) — A new training algorithm for local model networks with higher degree polynomials , 2009, 2009 IEEE International Conference on Control and Automation.

[123]  Robert Babuska,et al.  Neuro-fuzzy methods for nonlinear system identification , 2003, Annu. Rev. Control..

[124]  Wen Tan,et al.  Multimodel analysis and controller design for nonlinear processes , 2004, Comput. Chem. Eng..

[125]  Afzal Chamroo,et al.  A counter flow water to oil heat exchanger: MISO quasi linear parameter varying modeling and identification , 2012, Simul. Model. Pract. Theory.

[126]  José Ragot,et al.  Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor Model , 2010 .