Functional Magnetic Resonance Imaging Evidence for a Hierarchical Organization of the Prefrontal Cortex

The prefrontal cortex (PFC) is central to flexible and organized action. Recent theoretical and empirical results suggest that the rostro-caudal axis of the frontal lobes may reflect a hierarchical organization of control. Here, we test whether the rostro-caudal axis of the PFC is organized hierarchically, based on the level of abstraction at which multiple representations compete to guide selection of action. Four functional magnetic resonance imaging (fMRI) experiments parametrically manipulated the set of task-relevant (a) responses, (b) features, (c) dimensions, and (d) overlapping cue-to-dimension mappings. A systematic posterior to anterior gradient was evident within the PFC depending on the manipulated level of representation. Furthermore, across four fMRI experiments, activation in PFC subregions was consistent with the sub- and superordinate relationships that define an abstract representational hierarchy. In addition to providing further support for a representational hierarchy account of the rostro-caudal gradient in the PFC, these data provide important empirical constraints on current theorizing about control hierarchies and the PFC.

[1]  David Badre,et al.  Left ventrolateral prefrontal cortex and the cognitive control of memory , 2007, Neuropsychologia.

[2]  Cameron S. Carter,et al.  The Relationship of Three Cortical Regions to an Information-Processing Model , 2004, Journal of Cognitive Neuroscience.

[3]  D. Stuss,et al.  Principles of frontal lobe function , 2002 .

[4]  R. Poldrack,et al.  Dissociable Controlled Retrieval and Generalized Selection Mechanisms in Ventrolateral Prefrontal Cortex , 2005, Neuron.

[5]  Eliot Hazeltine,et al.  Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection , 2002, NeuroImage.

[6]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[7]  John R. Anderson,et al.  Competition and representation during memory retrieval: Roles of the prefrontal cortex and the posterior parietal cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[9]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[10]  Thomas E. Hazy,et al.  Banishing the homunculus: Making working memory work , 2006, Neuroscience.

[11]  T. Braver,et al.  The Role of Frontopolar Cortex in Subgoal Processing during Working Memory , 2002, NeuroImage.

[12]  Alan C. Evans,et al.  Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis , 1999, The European journal of neuroscience.

[13]  R. Passingham,et al.  Prefrontal interactions reflect future task operations , 2003, Nature Neuroscience.

[14]  J. Fuster Upper processing stages of the perception–action cycle , 2004, Trends in Cognitive Sciences.

[15]  Stephen Lawrie,et al.  Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-analysis , 2006, Journal of Cognitive Neuroscience.

[16]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  Elliot Saltzman,et al.  Levels of sensorimotor representation , 1979 .

[18]  J. Kerns Distinct conflict resolution deficits related to different facets of Schizophrenia , 2009, Psychological research.

[19]  T. Shallice,et al.  Hierarchical schemas and goals in the control of sequential behavior. , 2006, Psychological review.

[20]  R. Spinks The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 3rd ed. , 2000 .

[21]  M. Botvinick Hierarchical models of behavior and prefrontal function , 2008, Trends in Cognitive Sciences.

[22]  Kenneth F. Valyear,et al.  Dissociating Arbitrary Stimulus-Response Mapping from Movement Planning during Preparatory Period: Evidence from Event-Related Functional Magnetic Resonance Imaging , 2006, The Journal of Neuroscience.

[23]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[24]  A. Newell Unified Theories of Cognition , 1990 .

[25]  David Gaffan,et al.  Dorsolateral prefrontal lesions do not impair tests of scene learning and decision-making that require frontal–temporal interaction , 2008, The European journal of neuroscience.

[26]  K. Lashley The problem of serial order in behavior , 1951 .

[27]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[28]  James B. Rowe,et al.  Dorsal Prefrontal Cortex: Maintenance in Memory or Attentional Selection? , 2002 .

[29]  A M Dale,et al.  Segregation of somatosensory activation in the human rolandic cortex using fMRI. , 2000, Journal of neurophysiology.

[30]  L. A. Jeffress,et al.  Cerebral Mechanisms in Behavior , 1953 .

[31]  B. Postle,et al.  Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies , 2000, Experimental Brain Research.

[32]  Silvia A. Bunge,et al.  A Brain-Based Account of the Development of Rule Use in Childhood , 2006 .

[33]  Jonathan D. Cohen,et al.  Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. , 2002, Cerebral cortex.

[34]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[35]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[36]  Y. Trope,et al.  The Psychology of Transcending the Here and Now , 2008, Science.

[37]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[38]  M. Brass,et al.  The role of the inferior frontal junction area in cognitive control , 2005, Trends in Cognitive Sciences.

[39]  R. Buckner,et al.  Dissociating State and Item Components of Recognition Memory Using fMRI , 2001, NeuroImage.

[40]  G. Miller,et al.  Plans and the structure of behavior , 1960 .

[41]  J. Gabrieli,et al.  The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex , 2000, Psychobiology.

[42]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[43]  Arthur P. Shimamura,et al.  Memory and frontal lobe function. , 1995 .

[44]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[45]  C. Summerfield,et al.  An information theoretical approach to prefrontal executive function , 2007, Trends in Cognitive Sciences.

[46]  Charles D. Smith,et al.  Dissociation of Automatic and Strategic Lexical-Semantics: Functional Magnetic Resonance Imaging Evidence for Differing Roles of Multiple Frontotemporal Regions , 2006, The Journal of Neuroscience.

[47]  David Badre,et al.  Selection, Integration, and Conflict Monitoring Assessing the Nature and Generality of Prefrontal Cognitive Control Mechanisms , 2004, Neuron.

[48]  Jeremy R. Reynolds,et al.  Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching , 2003, Neuron.

[49]  D. Plaut,et al.  Doing without schema hierarchies: a recurrent connectionist approach to normal and impaired routine sequential action. , 2004, Psychological review.

[50]  H. Spinnler The prefrontal cortex, Anatomy, physiology, and neuropsychology of the frontal lobe, J.M. Fuster. Raven Press, New York (1980), IX-222 pages , 1981 .

[51]  S. Monsell Task switching , 2003, Trends in Cognitive Sciences.

[52]  Matthew M Botvinick,et al.  Multilevel structure in behaviour and in the brain: a model of Fuster's hierarchy , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[53]  G. Miller,et al.  Plans and the structure of behavior , 1960 .

[54]  E. Miller,et al.  Neural circuits subserving the retrieval and maintenance of abstract rules. , 2003, Journal of neurophysiology.

[55]  S. Bunge How we use rules to select actions: A review of evidence from cognitive neuroscience , 2004, Cognitive, affective & behavioral neuroscience.

[56]  Claus Bundesen,et al.  Very clever homunculus: Compound stimulus strategies for the explicit task-cuing procedure , 2004, Psychonomic bulletin & review.

[57]  Randy L Buckner,et al.  Functional–Anatomic Correlates of Control Processes in Memory , 2003, The Journal of Neuroscience.

[58]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[59]  Donald T. Stuss,et al.  The Frontal Lobes and Control of Cognition and Memory , 2019, The Frontal Lobes Revisited.

[60]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[61]  E. Koechlin,et al.  Broca's Area and the Hierarchical Organization of Human Behavior , 2006, Neuron.

[62]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.