Zori 1.0: A parallel quantum Monte Carlo electronic structure package

The Zori 1.0 package for electronic structure computations is described. Zori performs variational and diffusion Monte Carlo computations as well as correlated wave function optimization. This article presents an overview of the implemented methods and code capabilities. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 856–862, 2005

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  R. Jastrow Many-Body Problem with Strong Forces , 1955 .

[3]  E. C. Curtis,et al.  Local-Energy Method in Electronic Energy Calculations , 1960 .

[4]  H. Conroy Molecular Schrödinger Equation. II. Monte Carlo Evaluation of Integrals , 1964 .

[5]  N. Handy,et al.  A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[7]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[8]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[9]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[10]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[11]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[12]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[13]  P. Reynolds,et al.  H + H2 reaction barrier: A fixed‐node quantum Monte Carlo study , 1985 .

[14]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[15]  S. M. Rothstein,et al.  Reliable diffusion quantum Monte Carlo , 1988 .

[16]  P. Reynolds,et al.  Monte Carlo study of electron correlation functions for small molecules , 1989 .

[17]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[18]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[19]  William A. Lester,et al.  Quantum Monte Carlo for the Electronic Structure of Atoms and Molecules , 1990 .

[20]  Morgan,et al.  Fock's expansion, Kato's cusp conditions, and the exponential ansatz. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[21]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[22]  Umrigar,et al.  Accelerated Metropolis method. , 1993, Physical review letters.

[23]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[24]  K. Fiedler,et al.  Monte Carlo Methods in Ab Initio Quantum Chemistry , 1995 .

[25]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[26]  Stuart A. Rice,et al.  New methods in computational quantum mechanics , 1996 .

[27]  Lubos Mitas Electronic structure by quantum Monte Carlo: atoms, molecules and solids , 1996 .

[28]  M. P. N. C. Umrigar Monte Carlo Optimization of Trial Wave Functions in Quantum Mechanics and Statistical Mechanics , 1996, chem-ph/9608001.

[29]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[30]  William A. Lester,et al.  Recent Advances in Quantum Monte Carlo Methods , 1997 .

[31]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[32]  Chien-Jung Huang C. J. Umrigar M.P. Nightingale Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations , 1997, cond-mat/9703008.

[33]  Caffarel,et al.  Diffusion monte carlo methods with a fixed number of walkers , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[35]  Yuefan Deng,et al.  New trends in high performance computing , 2001, Parallel Computing.

[36]  J. Grossman,et al.  Linear-scaling quantum Monte Carlo calculations. , 2001, Physical review letters.

[37]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[38]  Dario Bressanini,et al.  Robust wave function optimization procedures in quantum Monte Carlo methods , 2002 .

[39]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[40]  A. Lüchow,et al.  Linear scaling for the local energy in quantum Monte Carlo , 2003 .

[41]  M. J. Gillan,et al.  LETTER TO THE EDITOR: Linear-scaling quantum Monte Carlo technique with non-orthogonal localized orbitals , 2004 .

[42]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[43]  T. Cundari,et al.  Reviews in Computational Chemistry: Lipkowitz/Computational Chemistry , 2005 .

[44]  Alán Aspuru-Guzik,et al.  A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo , 2005, J. Comput. Chem..

[45]  Adrian J Mulholland,et al.  Handbook of Theoretical and Computational Nanotechnology, Vol 6: Bioinformatics, Nanomedicine and Drug Design, Chapter 7 , 2006 .

[46]  Benjamin G. Janesko Computational chemistry , 2007, Nature Reviews Drug Discovery.

[47]  Dario Bressanini,et al.  Between Classical and Quantum Monte Carlo Methods: Variational QMC , 2007 .