Sensing scaled scintillations

We review some of the ways in which the fractal concept has found application in wave-propagation contexts. The scaling properties of fractals in both geometrical and statistical situations are reviewed and the relation to inverse power laws discussed. The relationship among the self-similar scaling properties of fractals, Levy distributions, and renormalized group theory is explored to provide a simple picture of wave propagation through multiscale media. Finally, the notion of using a wavelet transform in the processing of fractal time series is considered.

[1]  S. Kitaigorodskii,et al.  On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves , 1983 .

[2]  Charles Meneveau,et al.  The fractal facets of turbulence , 1986, Journal of Fluid Mechanics.

[3]  B. West Physiology in Fractal Dimensions , 1990 .

[4]  Michael F. Shlesinger,et al.  Analogs of renormalization group transformations in random processes , 1981 .

[5]  R. Crane,et al.  Ionospheric scintillation , 1977, Proceedings of the IEEE.

[6]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[7]  A. Goldberger,et al.  Beyond the principle of similitude: renormalization in the bronchial tree. , 1986, Journal of applied physiology.

[8]  M. Marians Computed scintillation spectra for strong turbulence , 1975 .

[9]  M. Holschneider On the wavelet transformation of fractal objects , 1988 .

[10]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[11]  U. Frisch,et al.  Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade , 1989, Nature.

[12]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[13]  A. Grossmann,et al.  DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .

[14]  C. Meneveau,et al.  The multifractal spectrum of the dissipation field in turbulent flows , 1987 .

[15]  M. Ausloos,et al.  A multivariate Weierstrass–Mandelbrot function , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Uriel Frisch,et al.  A simple dynamical model of intermittent fully developed turbulence , 1978, Journal of Fluid Mechanics.

[17]  E. Montroll,et al.  On 1/f noise and other distributions with long tails. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Ronald L. Fante,et al.  Some physical insights into beam propagation in strong turbulence , 1980 .

[20]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[21]  M. Lax MULTIPLE SCATTERING OF WAVES. II. THE EFFECTIVE FIELD IN DENSE SYSTEMS , 1952 .

[22]  G. Jona-Lasinio The renormalization group: A probabilistic view , 1975 .

[23]  D. Turcotte Fractals in Fluid Mechanics , 1988 .

[24]  E W Montroll,et al.  Random walks with self-similar clusters. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Peter B. Weichman,et al.  Statistical geometry of a small surface patch in a developed sea , 1989 .

[26]  K. C. Yeh,et al.  Multifrequency spectra of ionospheric amplitude scintillations , 1977 .

[27]  J. Morlet,et al.  Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .

[28]  H. Booker,et al.  Diffraction from an irregular screen with applications to ionospheric problems , 1950, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  A. Arneodo,et al.  Wavelet transform of multifractals. , 1988, Physical review letters.

[30]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[31]  A L Goldberger,et al.  On a mechanism of cardiac electrical stability. The fractal hypothesis. , 1985, Biophysical journal.

[32]  Bruce J. West,et al.  ON THE UBIQUITY OF 1/f NOISE , 1989 .

[33]  J. McWhirter,et al.  Correlation function dependence of the scintillation behind a deep random phase screen , 1977 .

[34]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[35]  W. Pierson,et al.  Wind Generated Gravity Waves , 1955 .

[36]  L. T. Little,et al.  Radio scintillations due to plasma irregularities with power law spectra: The interplanetary medium , 1971 .

[37]  Leo P. Kadanoff,et al.  Teaching the Renormalization Group. , 1978 .

[38]  R. Dashen Path integrals for waves in random media , 1977 .

[39]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[40]  Stable Distribution and Levy Process in Fractal Turbulence , 1984 .

[41]  M. Nauenberg Scaling representation for critical phenomena , 1975 .

[42]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[43]  E. E. Underwood,et al.  Fractals in fractography , 1985 .

[44]  The fractal interpretation of the weak scattering of elastic waves , 1984 .

[45]  Dennis Gabor,et al.  Theory of communication , 1946 .

[46]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[47]  R. Daniel Mauldin,et al.  On the Hausdorff dimension of some graphs , 1986 .

[48]  E. Domany,et al.  Effects of microstructure on the speed and attenuation of elastic waves in porous materials , 1984 .

[49]  A. Hewish,et al.  Interplanetary Scintillation of Small Diameter Radio Sources , 1964, Nature.

[50]  C. Rino,et al.  A power law phase screen model for ionospheric scintillation: 1. Weak scatter , 1979 .

[51]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .