Iterative Decoding Based on the Concave-Convex Procedure
暂无分享,去创建一个
Tomoharu Shibuya | Kohichi Sakaniwa | Ken Harada | Ryosuke Tohyama | Ken Harada | K. Sakaniwa | T. Shibuya | Ryosuke Tohyama
[1] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[2] Alan L. Yuille,et al. CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation , 2002, Neural Computation.
[3] K. A. Connors. The Free Energy , 2003 .
[4] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[5] W. Freeman,et al. Bethe free energy, Kikuchi approximations, and belief propagation algorithms , 2001 .
[6] William T. Freeman,et al. Understanding belief propagation and its generalizations , 2003 .
[7] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[8] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[9] Tomoharu Shibuya,et al. Performance of a Decoding Algorithm for LDPC Codes Based on the Concave-Convex Procedure , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[10] Brendan J. Frey,et al. Graphical Models for Machine Learning and Digital Communication , 1998 .
[11] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[12] D. Mackay. A conversation about the Bethe free energy and sum-product , 2001 .