Searching for gravitational waves from binary coalescence

We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.

[1]  Filtering post-Newtonian gravitational waves from coalescing binaries. , 1994, Physical review. D, Particles and fields.

[2]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[3]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[4]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[5]  T. Cokelaer,et al.  Searching for gravitational-wave signals emitted by eccentric compact binaries using a non-eccentric template bank: implications for ground-based detectors , 2009, 0903.4791.

[6]  P. Brady,et al.  Upper limits on gravitational-wave signals based on loudest events , 2004, gr-qc/0405044.

[7]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[8]  A. Buonanno,et al.  A physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries , 2003, gr-qc/0310034.

[9]  Duncan A. Brown,et al.  Template banks to search for compact binaries with spinning components in gravitational wave data , 2009, 0904.1715.

[10]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[11]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[12]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[13]  A. Rodriguez Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems , 2008, 0802.1376.

[14]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[15]  I. Mandel,et al.  Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.

[16]  Signal based vetoes for the detection of gravitational waves from inspiralling compact binaries , 2005, gr-qc/0502002.

[17]  Adrian Chapman,et al.  Singular value decomposition applied to compact binary coalescence gravitational-wave signals , 2010, 1005.0012.

[18]  A. Sengupta,et al.  Geometric algorithm for efficient coincident detection of gravitational waves , 2008, 0804.4816.

[19]  Drew Keppel,et al.  Efficiently enclosing the compact binary parameter space by singular-value decomposition , 2011, 1101.4939.

[20]  et al,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005 .

[21]  M. M. Casey,et al.  Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .

[22]  N. Leroy,et al.  On the background estimation by time slides in a network of gravitational wave detectors , 2009, 0906.2120.

[23]  W. Marsden I and J , 2012 .

[24]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[25]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[26]  Michele Vallisneri,et al.  Erratum: Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit [Phys. Rev. D67, 104025 (2003)] , 2006 .

[27]  Yi Pan,et al.  Erratum: Physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries [Phys. Rev. D 69, 104017 (2004)] , 2006 .

[28]  Balasubramanian,et al.  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.

[29]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[30]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[31]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[32]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[33]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[34]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[35]  S. Fairhurst,et al.  Interpreting the results of searches for gravitational waves from coalescing binaries , 2007, 0707.2410.

[36]  E. al.,et al.  Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals , 2007, 0712.2050.

[37]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise. , 1994, Physical review. D, Particles and fields.

[38]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[39]  K. Cannon,et al.  Composite gravitational-wave detection of compact binary coalescence , 2011, 1101.0584.

[40]  J. K. Blackburn,et al.  Search for gravitational waves from binary black hole inspiral, merger, and ringdown (vol 83, 122005, 2011) , 2012 .

[41]  I. Mandel,et al.  Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.

[42]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[43]  Pradeep Mitra Ecspe,et al.  REPORT NO , 2001 .

[44]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[45]  Reducing false alarms in searches for gravitational waves from coalescing binary systems , 2007 .

[46]  Michele Vallisneri,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2003 .

[47]  Sanjeev Dhurandhar,et al.  A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2001 .

[48]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[49]  S. Fairhurst,et al.  Reducing the effect of seismic noise in LIGO searches by targeted veto generation , 2011, 1108.0312.

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[52]  Owen Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1996, Physical review. D, Particles and fields.

[53]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[54]  Joan M. Centrella,et al.  Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.

[55]  D. Keppel,et al.  Signatures and Dynamics of Compact Binary Coalescences and a Search in LIGO’s S5 Data , 2009 .

[56]  K. S. Thorne,et al.  The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.

[57]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[58]  Steven G. Johnson,et al.  FFTW: Fastest Fourier Transform in the West , 2012 .

[59]  David Blair,et al.  First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts , 2022 .

[60]  Duncan A Brown Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral , 2005 .

[61]  David Blair,et al.  Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .

[62]  José A. González,et al.  Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.

[63]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[64]  Joshua R. Smith,et al.  Final Results of the All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run , 2010 .

[65]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[66]  C. Broeck,et al.  Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.

[67]  T. Hayler,et al.  Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.

[68]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[69]  C. Hanna Searching for gravitational waves from binary systems in non-stationary data , 2008 .

[70]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[71]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[72]  Robert W. Taylor,et al.  Erratum: Search for gravitational waves from binary black hole inspiral, merger, and ringdown (Physical Review D - Particles, Fields, Gravitation and Cosmology (2011) 83 (122005)) , 2012 .

[73]  P. Ajith Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins , 2011, 1107.1267.

[74]  Joshua R. Smith,et al.  Methods for reducing false alarms in searches for compact binary coalescences in LIGO data , 2010, 1004.0998.

[75]  P. Bonifazi,et al.  First gravity wave coincidence experiment between resonant cryogenic detectors: Louisiana-Rome-Stanford , 1989 .

[76]  T. Apostolatos,et al.  Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.

[77]  Bernard F. Schutz,et al.  Search for gravitational waves from binary black hole inspirals in LIGO data , 2006 .

[78]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3 , 2012, 1205.2216.

[79]  Collin D. Capano,et al.  Searching for Gravitational Waves from Compact Binary Coalescence Using LIGO and Virgo Data , 2011 .

[80]  K. S. Thorne,et al.  Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010, 1007.3973.

[81]  B. Owen,et al.  Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform , 1999, gr-qc/9901076.

[82]  S. Fairhurst,et al.  Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.

[83]  A new waveform consistency test for gravitational wave inspiral searches , 2004, gr-qc/0404064.

[84]  L. Pekowsky Characterization of enhanced interferometric gravitational-wave detectors and studies of numeric simulations for compact-binary coalescences , 2011 .

[85]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[86]  Duncan A. Brown,et al.  Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors , 2009, 0909.0066.

[87]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.