Searching for gravitational waves from binary coalescence
暂无分享,去创建一个
B. S. Sathyaprakash | T. Cokelaer | I. W. Harry | S. Babak | J. D. E. Creighton | L. Pekowsky | A. Dietz | P. R. Brady | D. A. Brown | T. Dent | S. Fairhurst | S. Privitera | A. S. Sengupta | R. Vaulin | A. J. Weinstein | Duncan A. Brown | S. Babak | S. Fairhurst | L. Pekowsky | S. Privitera | R. Vaulin | R. Biswas | P. Brady | K. Cannon | J. Creighton | T. Dent | G. González | C. Hanna | A. Sengupta | A. Weinstein | B. Sathyaprakash | D. Brown | I. Harry | D. Keppel | T. Cokelaer | M. Vallisneri | A. Dietz | N. Fotopoulos | G. Jones | C. Capano | C. Hanna | K. Cannon | D. Keppel | D. McKechan | C. Robinson | A. Rodriguez | R. Biswas | K. Cannon | C. D. Capano | J. H. Clayton | N. Fotopoulos | G. Gonzalez | G. Jones | D. Keppel | D. J. A. McKechan | C. Robinson | A. C. Rodriguez | M. Vallisneri | J. Clayton | Greg Jones | D. Brown | Á. Rodriguez
[1] Filtering post-Newtonian gravitational waves from coalescing binaries. , 1994, Physical review. D, Particles and fields.
[2] et al,et al. Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.
[3] et al,et al. Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.
[4] K. S. Thorne,et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.
[5] T. Cokelaer,et al. Searching for gravitational-wave signals emitted by eccentric compact binaries using a non-eccentric template bank: implications for ground-based detectors , 2009, 0903.4791.
[6] P. Brady,et al. Upper limits on gravitational-wave signals based on loudest events , 2004, gr-qc/0405044.
[7] T. Cokelaer. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.
[8] A. Buonanno,et al. A physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries , 2003, gr-qc/0310034.
[9] Duncan A. Brown,et al. Template banks to search for compact binaries with spinning components in gravitational wave data , 2009, 0904.1715.
[10] M Hannam,et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.
[11] T. Hayler,et al. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .
[12] B. Owen,et al. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.
[13] A. Rodriguez. Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems , 2008, 0802.1376.
[14] Finn,et al. Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.
[15] I. Mandel,et al. Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.
[16] Signal based vetoes for the detection of gravitational waves from inspiralling compact binaries , 2005, gr-qc/0502002.
[17] Adrian Chapman,et al. Singular value decomposition applied to compact binary coalescence gravitational-wave signals , 2010, 1005.0012.
[18] A. Sengupta,et al. Geometric algorithm for efficient coincident detection of gravitational waves , 2008, 0804.4816.
[19] Drew Keppel,et al. Efficiently enclosing the compact binary parameter space by singular-value decomposition , 2011, 1101.4939.
[20] et al,et al. Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005 .
[21] M. M. Casey,et al. Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .
[22] N. Leroy,et al. On the background estimation by time slides in a network of gravitational wave detectors , 2009, 0906.2120.
[23] W. Marsden. I and J , 2012 .
[24] Martin M. Fejer,et al. Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .
[25] A. Vecchio,et al. Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.
[26] Michele Vallisneri,et al. Erratum: Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit [Phys. Rev. D67, 104025 (2003)] , 2006 .
[27] Yi Pan,et al. Erratum: Physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries [Phys. Rev. D 69, 104017 (2004)] , 2006 .
[28] Balasubramanian,et al. Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.
[29] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[30] B. S. Sathyaprakash,et al. A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.
[31] B. Sathyaprakash,et al. Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.
[32] Flanagan,et al. The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.
[33] Yi Pan,et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.
[34] Thorne,et al. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.
[35] S. Fairhurst,et al. Interpreting the results of searches for gravitational waves from coalescing binaries , 2007, 0707.2410.
[36] E. al.,et al. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals , 2007, 0712.2050.
[37] B. Sathyaprakash,et al. Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise. , 1994, Physical review. D, Particles and fields.
[38] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[39] K. Cannon,et al. Composite gravitational-wave detection of compact binary coalescence , 2011, 1101.0584.
[40] J. K. Blackburn,et al. Search for gravitational waves from binary black hole inspiral, merger, and ringdown (vol 83, 122005, 2011) , 2012 .
[41] I. Mandel,et al. Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.
[42] E. Phinney. The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .
[43] Pradeep Mitra Ecspe,et al. REPORT NO , 2001 .
[44] Bruce Allen. χ2 time-frequency discriminator for gravitational wave detection , 2005 .
[45] Reducing false alarms in searches for gravitational waves from coalescing binary systems , 2007 .
[46] Michele Vallisneri,et al. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2003 .
[47] Sanjeev Dhurandhar,et al. A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2001 .
[48] E. Berger,et al. WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.
[49] S. Fairhurst,et al. Reducing the effect of seismic noise in LIGO searches by targeted veto generation , 2011, 1108.0312.
[50] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[51] Albert A. Mullin,et al. Extraction of signals from noise , 1970 .
[52] Owen. Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1996, Physical review. D, Particles and fields.
[53] Bruce Allen,et al. FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.
[54] Joan M. Centrella,et al. Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.
[55] D. Keppel,et al. Signatures and Dynamics of Compact Binary Coalescences and a Search in LIGO’s S5 Data , 2009 .
[56] K. S. Thorne,et al. The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.
[57] S. Fairhurst,et al. The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.
[58] Steven G. Johnson,et al. FFTW: Fastest Fourier Transform in the West , 2012 .
[59] David Blair,et al. First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts , 2022 .
[60] Duncan A Brown. Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral , 2005 .
[61] David Blair,et al. Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .
[62] José A. González,et al. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.
[63] Erin Kara,et al. TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.
[64] Joshua R. Smith,et al. Final Results of the All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run , 2010 .
[65] P. Murdin. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .
[66] C. Broeck,et al. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.
[67] T. Hayler,et al. Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.
[68] et al,et al. Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .
[69] C. Hanna. Searching for gravitational waves from binary systems in non-stationary data , 2008 .
[70] M. Loupias,et al. Virgo: a laser interferometer to detect gravitational waves , 2012 .
[71] Gabriela Gonzalez,et al. The LIGO Scientific Collaboration , 2015 .
[72] Robert W. Taylor,et al. Erratum: Search for gravitational waves from binary black hole inspiral, merger, and ringdown (Physical Review D - Particles, Fields, Gravitation and Cosmology (2011) 83 (122005)) , 2012 .
[73] P. Ajith. Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins , 2011, 1107.1267.
[74] Joshua R. Smith,et al. Methods for reducing false alarms in searches for compact binary coalescences in LIGO data , 2010, 1004.0998.
[75] P. Bonifazi,et al. First gravity wave coincidence experiment between resonant cryogenic detectors: Louisiana-Rome-Stanford , 1989 .
[76] T. Apostolatos,et al. Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.
[77] Bernard F. Schutz,et al. Search for gravitational waves from binary black hole inspirals in LIGO data , 2006 .
[78] C. Broeck,et al. SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3 , 2012, 1205.2216.
[79] Collin D. Capano,et al. Searching for Gravitational Waves from Compact Binary Coalescence Using LIGO and Virgo Data , 2011 .
[80] K. S. Thorne,et al. Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010, 1007.3973.
[81] B. Owen,et al. Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform , 1999, gr-qc/9901076.
[82] S. Fairhurst,et al. Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.
[83] A new waveform consistency test for gravitational wave inspiral searches , 2004, gr-qc/0404064.
[84] L. Pekowsky. Characterization of enhanced interferometric gravitational-wave detectors and studies of numeric simulations for compact-binary coalescences , 2011 .
[85] L. Blanchet. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.
[86] Duncan A. Brown,et al. Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors , 2009, 0909.0066.
[87] P. Ajith,et al. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.