The return of subducted continental crust in Samoan lavas

Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the Earth’s surface at hotspots, but the proportion of recycled sediment in the mantle is small, and clear examples of recycled sediment in hotspot lavas are rare. Here we report remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures in Samoan lavas from three dredge locations on the underwater flanks of Savai’i island, Western Samoa. The submarine Savai’i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to the upper continental crust) in the Samoan mantle. Trace-element data show affinities similar to those of the upper continental crust—including exceptionally low Ce/Pb and Nb/U ratios—that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from these Samoan lavas significantly redefines the composition of the EM2 (enriched mantle 2; ref. 9) mantle endmember, and points to the presence of an ancient recycled upper continental crust component in the Samoan mantle plume.

[1]  J. Blusztajn,et al.  Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin , 2006 .

[2]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[3]  A. Basu,et al.  Earth Processes: Reading the Isotopic Code: Basu/Earth Processes: Reading the Isotopic Code , 1996 .

[4]  A. Hofmann,et al.  Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution , 1982, Nature.

[5]  K. Farley,et al.  Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end‐member: Evidence from the Samoan Volcanic Chain , 2004 .

[6]  Anne Katz Rn,et al.  A New Perspective , 2003 .

[7]  M. Norman,et al.  Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge , 2001 .

[8]  P. Burnard,et al.  Production, Release and Transport of Noble Gases in the Continental Crust , 2002 .

[9]  T. Pettke,et al.  Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth , 2005, Nature.

[10]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[11]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[12]  Katherine A. Kelley,et al.  Subduction cycling of U, Th, and Pb , 2005 .

[13]  B. Wilkinson,et al.  Phanerozoic cycling of sedimentary carbonate , 1989 .

[14]  D. Turcotte Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands: Geophysical Re , 1985 .

[15]  C. Hawkesworth,et al.  143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle , 1979, Nature.

[16]  A. Solow,et al.  Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project , 2004 .

[17]  L. Gasperini,et al.  Lower Cretaceous deposits trapped near the equatorial Mid-Atlantic Ridge , 1996, Nature.

[18]  R. K. O’nions,et al.  Identification of recycled continental material in the mantle from Sr, Nd and Pb isotope investigations , 1982 .

[19]  J. H. Natland,et al.  Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas , 1992 .

[20]  K. Johnsonc,et al.  Genesis of the Western Samoa seamount province : age , geochemical fingerprint and tectonics , 2004 .

[21]  S. Hart,et al.  Samoa reinstated as a primary hotspot trail , 2008 .

[22]  G. Wasserburg,et al.  Sm-Nd and Rb-Sr Chronology of Continental Crust Formation , 1978, Science.

[23]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[24]  H. Farmer A new perspective. , 1988, The Journal of the Florida Medical Association.

[25]  S. Hart,et al.  Heterogeneous mantle domains: signatures, genesis and mixing chronologies , 1988 .

[26]  S. Goldstein,et al.  Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective , 1982, Nature.

[27]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[28]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[29]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[30]  Guangping Xu,et al.  Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: New perspectives from ODP Leg 120 sites , 2002 .

[31]  Marie C. Johnson,et al.  Dehydration and melting experiments constrain the fate of subducted sediments , 2000 .

[32]  A. Koschinsky,et al.  Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: Proxies for trace metal paleosources and paleocean circulation , 1999 .

[33]  W. White,et al.  The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes , 1987 .

[34]  M. Honda,et al.  Sedimentary noble gases , 1980 .

[35]  B. Mason Composition of the Earth , 1966, Nature.

[36]  S. J. Goldstein,et al.  Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution , 1988 .

[37]  S. Hart,et al.  Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle , 1993, Nature.

[38]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[39]  A. B. Ronov,et al.  Quantitative analysis of Phanerozoic sedimentation , 1980 .

[40]  S. Hart,et al.  Strontium isotopes in melt inclusions from Samoan basalts: Implications for heterogeneity in the Samoan plume , 2006 .

[41]  K. Govindaraju 1995 WORKING VALUES WITH CONFIDENCE LIMITS FOR TWENTY-SIX CRPG, ANRT AND IWG-GIT GEOSTANDARDS , 1995 .

[42]  B. Doe,et al.  Plumbotectonics-the model , 1981 .

[43]  C. G. Chase Oceanic island Pb: Two-stage histories and mantle evolution , 1981 .

[44]  J. Woodhead Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook—Austral hotspot , 1996 .

[45]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[46]  B. Taylor The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi , 2006 .

[47]  W. McDonough Constraints on the composition of the continental lithospheric mantle , 1990 .