Parameterized Enumeration for Modification Problems

Recently the class \(DelayFPT\) has been introduced into parameterized complexity in order to capture the notion of efficiently solvable parameterized enumeration problems. In this paper we propose a framework for parameterized ordered enumeration and will show how to obtain \(DelayFPT\) enumeration algorithms in the context of graph modification problems. We study these problems considering two different orders of solutions, lexicographic and by size. We present generic algorithmic strategies: The first one is based on the well-known principle of self-reducibility in the context of lexicographic order. The second one shows that the existence of some neighborhood structure among the solutions implies the existence of a \(DelayFPT\) algorithm which outputs all solutions ordered non-decreasingly by their size.

[1]  Peter Damaschke Parameterized enumeration, transversals, and imperfect phylogeny reconstruction , 2006, Theor. Comput. Sci..

[2]  Fedor V. Fomin,et al.  A Polynomial Kernel for Proper Interval Vertex Deletion , 2013, SIAM J. Discret. Math..

[3]  K. Sörensen,et al.  AN ALGORITHM TO GENERATE ALL SPANNING TREES OF A GRAPH IN ORDER OF INCREASING COST , 2005 .

[4]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for CLOSEST STRING and Related Problems , 2003, Algorithmica.

[5]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[6]  A. Litman,et al.  On covering problems of codes , 1997, Theory of Computing Systems.

[7]  Arne Meier,et al.  Paradigms for Parameterized Enumeration , 2013, MFCS.

[8]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[9]  Nadia Creignou,et al.  Enumerating All Solutions of a Boolean CSP by Non-decreasing Weight , 2011, SAT.

[10]  Stefan Szeider,et al.  Backdoors to Satisfaction , 2011, The Multivariate Algorithmic Revolution and Beyond.

[11]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Nadia Creignou,et al.  On Generating All Solutions of Generalized Satisfiability Problems , 1997, RAIRO Theor. Informatics Appl..

[14]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[15]  Henning Fernau,et al.  On Parameterized Enumeration , 2002, COCOON.

[16]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[17]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[18]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[19]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..