GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE

This paper is an overview of the main ideas of the Generalized Finite Element Method (GFEM). We present the basic results, experiences with, and potentials of this method. GFEM is a generalization of the classical Finite Element Method — in its h, p, and h-p versions — as well as of the various forms of meshless methods used in engineering.

[1]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[2]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[3]  I. Babuska,et al.  The generalized finite element method , 2001 .

[4]  Stefan Bergman,et al.  Integral Operators In The Theory Of Linear Partial Differential Equations , 1962 .

[5]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[6]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[7]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[8]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[9]  K. Bathe,et al.  The method of finite spheres , 2000 .

[10]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[11]  Ivo Babuška,et al.  Damage analysis of fiber composites Part I: Statistical analysis on fiber scale , 1999 .

[12]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[13]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[14]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[15]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[16]  Solomon G. Mikhlin,et al.  The numerical performance of variational methods , 1971 .

[17]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[18]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[19]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[20]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[21]  Ivo Babuška,et al.  A numerical procedure for the determination of certain quantities related to the stress intensity factors in two-dimensional elasticity , 1995 .

[22]  Leszek Demkowicz,et al.  On some convergence results for FDM with irregular mesh , 1984 .

[23]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[24]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[25]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[26]  Ted Belytschko,et al.  AN EXTENDED FINITE ELEMENT METHOD (X-FEM) FOR TWO- AND THREE-DIMENSIONAL CRACK MODELING , 2000 .

[27]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[28]  C. Innocenti,et al.  A Numerical Procedure for the Determination and Control of All Configurations of a Manipulator , 1986 .

[29]  Marc Alexander Schweitzer,et al.  A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations , 2003, Lecture Notes in Computational Science and Engineering.

[30]  Omar Laghrouche,et al.  Solving short wave problems using special finite elements - Towards an adaptive approach , 2000 .

[31]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[32]  Ivo Babuška,et al.  Approximation with harmonic and generalized harmonic polynomials in the partition of unity method , 1997 .

[33]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[34]  Ivo Babuška,et al.  On principles for the selection of shape functions for the Generalized Finite Element Method , 2002 .

[35]  Ivo Babuška,et al.  Mesh‐independent p‐orthotropic enrichment using the generalized finite element method , 2002 .

[36]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[37]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[38]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[39]  Udo Meißner,et al.  Object-oriented integration of construction and simulation models , 2001 .

[40]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[41]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[42]  M. A. McCarthy,et al.  A local Heaviside weighted meshless method for two-dimensional solids using radial basis functions , 2003 .

[43]  Alan B. Tayler,et al.  New methods for solving elliptic equations , 1969 .

[44]  H. Kober,et al.  Dictionary of conformal representations , 1957 .