A Coupled Statistical/Semantic Framework for Merging Heterogeneous Domain-Specific Ontologies

Discovering semantic correspondences between ontology elements is a crucial task for merging heterogeneous ontologies. Most ontology merging tools use several methods to aggregate and combine similarity measures. In addition, some of the ontology merging systems exploit external resources such as, Linguistic Knowledge Bases (e.g. WordNet) to support this task. However, the quality of their results is subjected to the limitations of the exploited knowledge base. In this paper, we present a framework that exploits multiple knowledge bases that cover information in multiple domains for: i) Indentifying and correcting incorrect semantic relations between the concepts of domain-specific ontologies. This is a primary step before ontology merging; ii) Merging domain-specific ontologies; and iii) Handling the issue of missing background knowledge in the exploited knowledge bases by utilizing statistical techniques. An experimental instantiation of the framework and comparisons with state-of-the-art syntactic and semantic-based systems validate our proposal.

[1]  X-SOM: A Flexible Ontology Mapper , 2007, 18th International Workshop on Database and Expert Systems Applications (DEXA 2007).

[2]  William E. Winkler,et al.  The State of Record Linkage and Current Research Problems , 1999 .

[3]  Gerhard Weikum,et al.  SOFIE: a self-organizing framework for information extraction , 2009, WWW '09.

[4]  Cosmin Stroe,et al.  AgreementMaker: Efficient Matching for Large Real-World Schemas and Ontologies , 2009, Proc. VLDB Endow..

[5]  Rose Dieng,et al.  Comparison of Personal Ontologies Represented through Conceptual Graphs , 1998, ECAI.

[6]  Chantal Reynaud,et al.  TaxoMap in the OAEI 2009 Alignment Contest , 2009, OM.

[7]  Mark A. Musen,et al.  PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment , 2000, AAAI/IAAI.

[8]  Sandra Geisler,et al.  Results of GeRoMeSuite for OAEI 2008 , 2008, OM.

[9]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[10]  Jürgen Bock,et al.  MapPSO Results for OAEI 2009 , 2009, OM.

[11]  Yi Li,et al.  RiMOM: A Dynamic Multistrategy Ontology Alignment Framework , 2009, IEEE Transactions on Knowledge and Data Engineering.

[12]  Michael J. Witbrock,et al.  An Introduction to the Syntax and Content of Cyc , 2006, AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering.

[13]  Juan-Zi Li,et al.  A gauss function based approach for unbalanced ontology matching , 2009, SIGMOD Conference.

[14]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[15]  Fabian M. Suchanek,et al.  Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia , 2007 .

[16]  Yannis Kalfoglou,et al.  Centre for Intelligent Systems and Their Applications , 2006 .

[17]  Pedro M. Domingos,et al.  Learning to match ontologies on the Semantic Web , 2003, The VLDB Journal.

[18]  Fausto Giunchiglia,et al.  S-Match: an Algorithm and an Implementation of Semantic Matching , 2004, ESWS.

[19]  Renata Vieira,et al.  A Cooperative Approach for Composite Ontology Mapping , 2008, J. Data Semant..

[20]  Jeff Z. Pan,et al.  KOSIMap: Ontology Alignments Results for OAEI 2009 , 2009, OM.

[21]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[22]  Volker Haarslev,et al.  An Effective Ontology Matching Technique , 2008, ISMIS.

[23]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[24]  Mohammad Reza Keyvanpour,et al.  A New Scheme of Automatic Semantic Propagation in the Image Data base Using a Hierarchical Structure of Semantics , 2007 .

[25]  Peigang Xu,et al.  Alignment results of SOBOM for OAEI 2010 , 2009, OM.

[26]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.