Gut Microbiota Modulate CD8 T Cell Responses to Influence Colitis-Associated Tumorigenesis.

[1]  G. Núñez,et al.  Dynamic and Asymmetric Changes of the Microbial Communities after Cohousing in Laboratory Mice. , 2019, Cell reports.

[2]  D. Philpott,et al.  Comparison of Co-housing and Littermate Methods for Microbiota Standardization in Mouse Models. , 2019, Cell reports.

[3]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[4]  N. Rezaei,et al.  IL‐17 and colorectal cancer: From carcinogenesis to treatment , 2019, Cytokine.

[5]  H. Tamaki,et al.  Host NLRP6 exacerbates graft-versus-host disease independent of gut microbial composition , 2019, Nature Microbiology.

[6]  D. Plichta,et al.  A defined commensal consortium elicits CD8 T cells and anti-cancer immunity , 2019, Nature.

[7]  K. Clément,et al.  Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter , 2019, Front. Microbiol..

[8]  N. Gagliani,et al.  Commensal Bacteria-Specific CD4+ T Cell Responses in Health and Disease , 2018, Front. Immunol..

[9]  Elizabeth A. Kennedy,et al.  Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria , 2018, Front. Physiol..

[10]  Robert C. Edgar,et al.  Taxonomy annotation and guide tree errors in 16S rRNA databases , 2018, PeerJ.

[11]  Chang H. Kim Immune regulation by microbiome metabolites , 2018, Immunology.

[12]  M. Oliveira,et al.  Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion , 2018, Front. Immunol..

[13]  D. Kasper,et al.  Moving beyond microbiome-wide associations to causal microbe identification , 2017, Nature.

[14]  A. Khoruts,et al.  Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning , 2017, Microbiome.

[15]  P. Schloss,et al.  NLRP6 Protects Il10-/- Mice from Colitis by Limiting Colonization of Akkermansia muciniphila. , 2017, Cell reports.

[16]  C. Benoist,et al.  Mining the Human Gut Microbiota for Immunomodulatory Organisms , 2017, Cell.

[17]  F. Ryan,et al.  Tumour-associated and non-tumour-associated microbiota in colorectal cancer , 2016, Gut.

[18]  N. Bhattacharya,et al.  Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer. , 2016, Immunity.

[19]  E. Elinav,et al.  Metabolites: messengers between the microbiota and the immune system , 2016, Genes & development.

[20]  D. Stanley,et al.  Experimental design considerations in microbiota/inflammation studies , 2016, Clinical & translational immunology.

[21]  Grace Y Chen,et al.  Nod1 Limits Colitis-Associated Tumorigenesis by Regulating IFN-γ Production , 2016, The Journal of Immunology.

[22]  Ahmedin Jemal,et al.  Global patterns and trends in colorectal cancer incidence and mortality , 2016, Gut.

[23]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[24]  Patrick D. Schloss,et al.  Manipulation of the Gut Microbiota Reveals Role in Colon Tumorigenesis , 2015, mSphere.

[25]  M. Washington,et al.  Tumor Necrosis Factor Receptor 2 Restricts the Pathogenicity of CD8(+) T Cells in Mice With Colitis. , 2015, Gastroenterology.

[26]  Kyle Bittinger,et al.  Engineering the gut microbiota to treat hyperammonemia. , 2015, The Journal of clinical investigation.

[27]  R. Lorenz,et al.  Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother , 2015, Microbiome.

[28]  S. Jonjić,et al.  Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. , 2015, Immunity.

[29]  S. Shiao,et al.  Impact of the immune system and immunotherapy in colorectal cancer. , 2014, Journal of gastrointestinal oncology.

[30]  P. Schloss,et al.  The Human Gut Microbiome as a Screening Tool for Colorectal Cancer , 2014, Cancer Prevention Research.

[31]  Patrick D Schloss,et al.  Structure of the gut microbiome following colonization with human feces determines colonic tumor burden , 2014, Microbiome.

[32]  E. Tartour,et al.  Colorectal cancer and immunity: what we know and perspectives. , 2014, World journal of gastroenterology.

[33]  Y. Belkaid,et al.  Role of the Microbiota in Immunity and Inflammation , 2014, Cell.

[34]  B. Chassaing,et al.  Dextran Sulfate Sodium (DSS)‐Induced Colitis in Mice , 2014, Current protocols in immunology.

[35]  J. Goedert,et al.  Human gut microbiome and risk for colorectal cancer. , 2013, Journal of the National Cancer Institute.

[36]  G. Núñez,et al.  Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. , 2013, Cancer research.

[37]  M. Tomita,et al.  Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells , 2013, Nature.

[38]  J. Petrosino,et al.  The Gut Microbiome Modulates Colon Tumorigenesis , 2013, mBio.

[39]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[40]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[41]  Cohen,et al.  IL-1 b Strikingly Enhances Antigen-Driven CD4 and CD8 T-Cell Responses , 2013 .

[42]  W. Paul,et al.  IL-1β strikingly enhances antigen-driven CD4 and CD8 T-cell responses. , 2013, Cold Spring Harbor symposia on quantitative biology.

[43]  A. Boraston,et al.  Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes , 2012, Proceedings of the National Academy of Sciences.

[44]  B. Molnár,et al.  Regulatory T cells in inflammatory bowel diseases and colorectal cancer. , 2012, World journal of gastroenterology.

[45]  Belgin Dogan,et al.  Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota , 2012, Science.

[46]  Timothy L. Tickle,et al.  Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment , 2012, Genome Biology.

[47]  A. Young,et al.  Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non-Invasive Biomarker for Intestinal Inflammation , 2012, PloS one.

[48]  E. Wherry,et al.  Commensal bacteria calibrate the activation threshold of innate antiviral immunity. , 2012, Immunity.

[49]  H. Flint,et al.  Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon , 2012, The ISME Journal.

[50]  Liping Zhao,et al.  Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers , 2011, The ISME Journal.

[51]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[52]  Pedro Romero,et al.  Exhaustion of tumor-specific CD8⁺ T cells in metastases from melanoma patients. , 2011, The Journal of clinical investigation.

[53]  Richard A. Flavell,et al.  NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis , 2011, Cell.

[54]  S. Morini,et al.  The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies , 2011, Journal of carcinogenesis.

[55]  J. Tap,et al.  Microbial Dysbiosis in Colorectal Cancer (CRC) Patients , 2011, PloS one.

[56]  K. Honda,et al.  Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species , 2011, Science.

[57]  P. Vandamme,et al.  Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives , 2011, Gut.

[58]  J. Kirkwood,et al.  Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients , 2010, The Journal of experimental medicine.

[59]  Jenna M. Sullivan,et al.  Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity , 2010, The Journal of experimental medicine.

[60]  Lloyd J. Old,et al.  Tumor-infiltrating NY-ESO-1–specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer , 2010, Proceedings of the National Academy of Sciences.

[61]  R. Xavier,et al.  Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 , 2009, Nature.

[62]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[63]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[64]  D. Getnet,et al.  Functionally Distinct LAG-3 and PD-1 Subsets on Activated and Chronically Stimulated CD8 T Cells1 , 2009, The Journal of Immunology.

[65]  Mihai Pop,et al.  Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples , 2009, PLoS Comput. Biol..

[66]  Gabriel Núñez,et al.  The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. , 2008, Cancer research.

[67]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[68]  Markus F Neurath,et al.  An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression , 2007, Nature Protocols.

[69]  Z. Trajanoski,et al.  Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome , 2006, Science.

[70]  Carmen Buchrieser,et al.  Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells , 2006, Science.

[71]  A. Gruber,et al.  Autoimmune-mediated intestinal inflammation-impact and regulation of antigen-specific CD8+ T cells. , 2006, Gastroenterology.

[72]  B. Flourié,et al.  CD8+ cytotoxic T cells induce relapsing colitis in normal mice. , 2006, Gastroenterology.

[73]  Z. Trajanoski,et al.  Effector memory T cells, early metastasis, and survival in colorectal cancer. , 2005, The New England journal of medicine.

[74]  Stefan Wirtz,et al.  TGF-β Suppresses Tumor Progression in Colon Cancer by Inhibition of IL-6 trans-Signaling , 2004 .

[75]  J. Clarridge,et al.  Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases , 2004, Clinical Microbiology Reviews.

[76]  Takuji Tanaka,et al.  Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate , 2004, Cancer science.

[77]  R. Kiesslich,et al.  TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. , 2004, Immunity.

[78]  E. Hiltbold,et al.  Cytoplasmic Entry of Listeria monocytogenes Enhances Dendritic Cell Maturation and T Cell Differentiation and Function , 2004, The Journal of Immunology.

[79]  Michael Karin,et al.  IKKβ Links Inflammation and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer , 2004, Cell.

[80]  E. Wherry,et al.  Memory CD8 T-Cell Differentiation during Viral Infection , 2004, Journal of Virology.

[81]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[82]  Takuji Tanaka,et al.  A novel inflammation‐related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate , 2003, Cancer science.

[83]  E. Wherry,et al.  Viral Persistence Alters CD8 T-Cell Immunodominance and Tissue Distribution and Results in Distinct Stages of Functional Impairment , 2003, Journal of Virology.

[84]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[85]  K. Abrams,et al.  The risk of colorectal cancer in ulcerative colitis: a meta-analysis , 2001, Gut.

[86]  Mario Roederer,et al.  Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients , 1999, Nature Medicine.

[87]  M. Jenkins,et al.  Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. , 1999, Journal of immunology.

[88]  J. Sundberg,et al.  CD4+ T Cells Reactive to Enteric Bacterial Antigens in Spontaneously Colitic C3H/HeJBir Mice: Increased T Helper Cell Type 1 Response and Ability to Transfer Disease , 1998, The Journal of experimental medicine.

[89]  L. Mazzucchelli,et al.  Activated CD4+ and CD8+ cytotoxic cells are present in increased numbers in the intestinal mucosa from patients with active inflammatory bowel disease. , 1998, The American journal of pathology.

[90]  G. Trinchieri Interleukin-12: a cytokine at the interface of inflammation and immunity. , 1998, Advances in immunology.

[91]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[92]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.