Self-formed pencil-like bulk composite materials consisting of copper alloy and stainless steel

On the basis of the CALPHAD (Calculation of Phase Diagrams) method, the compositional range of stable miscibility gap and volume fractions of the two liquid phases in the Cu–Fe–Cr–Ni system were predicted, which can provide the guidance for design of self-formed composite materials. Based on such information, the self-formed pencil-like bulk composite materials consisting of copper alloy and two kinds of stainless steels were prepared by controlling the compositions of Cu-rich and Fe-rich phases in immiscible liquid system by the conventional casting process. The experimental results are in good agreement with the ones predicted by calculation. This study indicates that it is possible to develop the pencil-like bulk composite materials consisting of copper alloy and stainless steels by the conventional casting process.

[1]  X. J. Liu,et al.  Thermodynamic database of the phase diagrams in copper base alloy systems , 2005 .

[2]  X. J. Liu,et al.  Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap , 2004 .

[3]  X. J. Liu,et al.  Thermodynamic database on microsolders and copper-based alloy systems , 2003 .

[4]  X. J. Liu,et al.  Formation of Immiscible Alloy Powders with Egg-Type Microstructure , 2002, Science.

[5]  Peter W Voorhees,et al.  Growth and Coarsening , 2002 .

[6]  L. Schultz,et al.  High-strength, high-nitrogen stainless steel–copper composite wires for conductors in pulsed high-field magnets , 2002 .

[7]  K. Ishida,et al.  Correlation between interfacial energy and phase diagram in ceramic-metal systems , 2001 .

[8]  P. A. Davidson An Introduction to Magnetohydrodynamics: Physical Properties of Liquid Metals , 2001 .

[9]  M. Santella,et al.  Wetting of iron aluminide alloys by Ag, Au, and Cu , 1998 .

[10]  Brian J Monaghan,et al.  Thermal conductivities of molten metals: Part 1 Pure metals , 1996 .

[11]  Y. Eyssa,et al.  Copper/stainless steel conductor for high field pulsed magnets , 1996 .

[12]  L. Ratke,et al.  Casting process for hypermonotectic alloys under terrestrial conditions , 1995 .

[13]  T. Adachi,et al.  Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures , 1995 .

[14]  S. Seetharaman,et al.  Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing , 1994 .

[15]  A. Dinsdale SGTE data for pure elements , 1991 .

[16]  Z. Livne,et al.  Characterization of explosively bonded iron and copper plates , 1987 .

[17]  M. Hillert,et al.  A model for alloying in ferromagnetic metals , 1978 .

[18]  J. S. Goldstein,et al.  The motion of bubbles in a vertical temperature gradient , 1959, Journal of Fluid Mechanics.

[19]  C. J. Smithells,et al.  Metals reference book , 1949 .

[20]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[21]  R. Becker Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen , 1938 .

[22]  C. Marangoni Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen , 1871 .