Perfect dexagon triple systems with given subsystems

The graph consisting of the six triples (or triangles) {a,b,c}, {c,d,e}, {e,f,a}, {x,a,y}, {x,c,z}, {x,e,w}, where a,b,c,d,e,f,x,y,z and w are distinct, is called a dexagon triple. In this case the six edges {a,c}, {c,e}, {e,a}, {x,a}, {x,c}, and {x,e} form a copy of K"4 and are called the inside edges of the dexagon triple. A dexagon triple system of order v is a pair (X,D), where D is a collection of edge disjoint dexagon triples which partitions the edge set of 3K"v. A dexagon triple system is said to be perfect if the inside copies of K"4 form a block design. In this note, we investigate the existence of a dexagon triple system with a subsystem. We show that the necessary conditions for the existence of a dexagon triple system of order v with a sub-dexagon triple system of order u are also sufficient.