A classical model for the magnetic field-induced Wigner crystallization in quantum dots

A classical model is presented for magnetic field-induced Wigner crystallization in electron systems confined within two-dimensional quantum dots. In contrast to other classical models, this one does not treat an electron as a point charge; the electron density is assumed to take a Gaussian form corresponding to the lowest Landau level. Using a Monte Carlo method we have determined the equilibrium configurations as functions of the magnetic field. We have found a classical counterpart of the quantum maximum density droplet (MDD) and studied the breakdown of the MDD into a Wigner molecule as well as the transformations of the Wigner molecule shape induced by the external magnetic field. The phase diagram for the classical Wigner molecules has been presented and its qualitative agreement with previous quantum mechanical calculations has been shown.

[1]  S. Bednarek,et al.  FOUR-ELECTRON QUANTUM DOT IN A MAGNETIC FIELD , 2003 .

[2]  S. Bednarek,et al.  Magnetic-field-induced phase transitions in Wigner molecules , 2003 .

[3]  H. Grabert,et al.  Unrestricted Hartree-Fock for quantum dots , 2003, cond-mat/0305623.

[4]  S. Bednarek,et al.  Erratum: Magnetic-field-induced transformations of Wigner-molecule symmetry in quantum dots [Phys. Rev. B 67, 045311 (2003)] , 2003 .

[5]  S. Bednarek,et al.  Correlation effects in vertical gated quantum dots , 2003 .

[6]  S. Bednarek,et al.  Magnetic-field-induced transformations of Wigner molecule symmetry in quantum dots , 2003 .

[7]  M. Manninen,et al.  Electronic structure of quantum dots , 2002 .

[8]  R. Nieminen,et al.  Lateral diatomic two-dimensional artificial molecules: Classical transitions and quantum-mechanical counterparts , 2002 .

[9]  K. Ziegler,et al.  Floating Wigner molecules and possible phase transitions in quantum dots , 2002, cond-mat/0206058.

[10]  N. Savostianova,et al.  Quantum-dot lithium in the strong-interaction regime: Depolarization of electron spins by a magnetic field , 2002, cond-mat/0206054.

[11]  U. Landman,et al.  Trial wave functions with long-range Coulomb correlations for two-dimensional N-electron systems in high magnetic fields , 2002, cond-mat/0204530.

[12]  Z. Németh,et al.  Ground state of a partially melted Wigner molecule , 2002, cond-mat/0203477.

[13]  S. Yang,et al.  Coupling between edge and bulk in strong-field quantum dots , 2002, cond-mat/0203035.

[14]  J. Kainz,et al.  QUANTUM DOTS IN HIGH MAGNETIC FIELDS: CALCULATION OF GROUND-STATE PROPERTIES , 2002 .

[15]  M. Tosi,et al.  Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field , 2002, cond-mat/0201490.

[16]  S. Viefers,et al.  Many-body spectrum and particle localization in quantum dots and finite rotating bose condensates , 2001, cond-mat/0110615.

[17]  F. Peeters,et al.  Transition between ground state and metastable states in classical two-dimensional atoms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  In-Ho Lee,et al.  Electron-electron interactions in square quantum dots , 2001 .

[19]  C. Guthmann,et al.  Macroscopic 2D Wigner islands , 2001, cond-mat/0101285.

[20]  F. Peeters,et al.  Transition from two-dimensional to three-dimensional classical artificial atoms , 2000 .

[21]  F. Peeters,et al.  Wigner crystallization in the two electron quantum dot , 2000, cond-mat/0005299.

[22]  U. Landman,et al.  Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects , 2000, cond-mat/0002364.

[23]  J. Banys,et al.  Glass behaviour in the solid solution of deuterated betaine phosphate0.15 betaine phosphite0.85 , 2000 .

[24]  H. Aoki,et al.  Molecular dynamics study of a classical two-dimensional electron system: positional and orientational orders , 1999, cond-mat/9906213.

[25]  M. Manninen,et al.  Quantum Dots in Magnetic Fields: Phase Diagram and Broken Symmetry at the Maximum-Density-Droplet Edge , 1999, cond-mat/9904067.

[26]  Leo P. Kouwenhoven,et al.  Maximum-density droplet and charge redistributions in quantum dots at high magnetic fields , 1999 .

[27]  R. Egger,et al.  Crossover from Fermi Liquid to Wigner Molecule Behavior in Quantum Dots , 1999, cond-mat/9903111.

[28]  J. Rino,et al.  The structure and spectrum of the anisotropically confined two-dimensional Yukawa system , 1998 .

[29]  M. Eto Electronic Structures of Few Electrons in a Quantum Dot under Magnetic Fields , 1997 .

[30]  F. Peeters,et al.  Classical artificial two-dimensional atoms : the Thomson model , 1996, cond-mat/9611008.

[31]  S. Koonin,et al.  Phase transitions in quantum dots. , 1996, Physical review. B, Condensed matter.

[32]  Peeters,et al.  Spectral properties of classical two-dimensional clusters. , 1995, Physical review. B, Condensed matter.

[33]  Peeters,et al.  Ordering and phase transitions of charged particles in a classical finite two-dimensional system. , 1994, Physical review. B, Condensed matter.

[34]  Tãut Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[35]  U. Rößler,et al.  Classical model of a Wigner crystal in a quantum dot , 1993 .

[36]  M. Johnson,et al.  Quantum dots in strong magnetic fields: stability criteria for the maximum density droplet , 1993, cond-mat/9301019.

[37]  E. Wigner On the Interaction of Electrons in Metals , 1934 .