Structure and Dynamics of Star Polymer Films from Coarse-Grained Molecular Simulations

[1]  J. Douglas,et al.  The Interfacial Layers Around Nanoparticle and Its Impact on Structural Relaxation and Glass Transition in Model Polymer Nanocomposites , 2020, Theory and Modeling of Polymer Nanocomposites.

[2]  J. Douglas,et al.  How Does Monomer Structure Affect the Interfacial Dynamics of Supported Ultrathin Polymer Films? , 2020, Macromolecules.

[3]  Kailong Jin,et al.  Impact of bottlebrush chain architecture on T g ‐confinement and fragility‐confinement effects enabled by thermo‐cleavable bottlebrush polymers synthesized by radical coupling and atom transfer radical polymerization , 2020 .

[4]  M. Tyagi,et al.  Effect of Molecular Stiffness on the Physical Aging of Polymers , 2020 .

[5]  Robert A. Riggleman,et al.  Effect of polymer-nanoparticle interaction on strain localization in polymer nanopillars. , 2020, Soft matter.

[6]  R. Spontak,et al.  Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties , 2020 .

[7]  J. Douglas,et al.  Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films. , 2020, The Journal of chemical physics.

[8]  J. Douglas,et al.  Dynamic heterogeneity and collective motion in star polymer melts. , 2020, The Journal of chemical physics.

[9]  J. Douglas,et al.  Influence of polymer topology on crystallization in thin films. , 2020, The Journal of chemical physics.

[10]  Beatriz A Pazmiño Betancourt,et al.  The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites. , 2019, The Journal of chemical physics.

[11]  J. Douglas,et al.  Influence of Branching on the Configurational and Dynamical Properties of Entangled Polymer Melts , 2019, Polymers.

[12]  Beatriz A Pazmiño Betancourt,et al.  Influence of knot complexity on glass-formation in low molecular mass ring polymer melts. , 2019, The Journal of chemical physics.

[13]  J. Douglas,et al.  Collective Motion in the Interfacial and Interior Regions of Supported Polymer Films and Its Relation to Relaxation. , 2019, The journal of physical chemistry. B.

[14]  J. Douglas,et al.  Hidden Hyperuniformity in Soft Polymeric Materials. , 2018, Physical review letters.

[15]  Beatriz A Pazmiño Betancourt,et al.  Communication: A comparison between the solution properties of knotted ring and star polymers. , 2018, The Journal of chemical physics.

[16]  Jenny C. Taylor,et al.  Effect of Chain Length and Topological Constraints on Segmental Relaxation in Cyclic PDMS , 2018, Macromolecules.

[17]  J. Douglas,et al.  A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts. , 2018, The Journal of chemical physics.

[18]  J. Mays,et al.  Impact of Molecular Architecture on Dynamics of Miktoarm Star Copolymers , 2018, Macromolecules.

[19]  S. Narayanan,et al.  Anomalous Confinement Slows Surface Fluctuations of Star Polymer Melt Films. , 2018, ACS macro letters.

[20]  J. Douglas,et al.  Why we need to look beyond the glass transition temperature to characterize the dynamics of thin supported polymer films , 2018, Proceedings of the National Academy of Sciences.

[21]  S. Narayanan,et al.  Free Surface Relaxations of Star-Shaped Polymer Films. , 2017, Physical review letters.

[22]  J. Douglas,et al.  Influence of polymer architectures on diffusion in unentangled polymer melts. , 2017, Soft matter.

[23]  J. Douglas,et al.  Effects of a "bound" substrate layer on the dynamics of supported polymer films. , 2017, The Journal of chemical physics.

[24]  J. Douglas,et al.  Dynamical heterogeneity in a vapor-deposited polymer glass. , 2017, The Journal of chemical physics.

[25]  Scott M. Grayson,et al.  Suppression of the Fragility-Confinement Effect via Low Molecular Weight Cyclic or Ring Polymer Topology , 2017 .

[26]  K. Freed,et al.  Influence of Cohesive Energy on Relaxation in a Model Glass-Forming Polymer Melt , 2016 .

[27]  Jack F. Douglas,et al.  Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt , 2016 .

[28]  S. Narayanan,et al.  Confinement Effects with Molten Thin Cyclic Polystyrene Films. , 2016, ACS macro letters.

[29]  S. Keten,et al.  Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining Dissimilar Free Surface Effects for Polystyrene vs Poly(methyl methacrylate). , 2016, ACS macro letters.

[30]  Scott M. Grayson,et al.  Major Impact of Cyclic Chain Topology on the Tg-Confinement Effect of Supported Thin Films of Polystyrene , 2016 .

[31]  J. Douglas,et al.  Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains. , 2015, The Journal of chemical physics.

[32]  J. Douglas,et al.  Communication: When does a branched polymer become a particle? , 2015, The Journal of chemical physics.

[33]  Alexandros Chremos,et al.  Vitrification of Thin Polymer Films: From Linear Chain to Soft Colloid-like Behavior , 2015 .

[34]  Jack F Douglas,et al.  Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials , 2015, Proceedings of the National Academy of Sciences.

[35]  Paul Z. Hanakata,et al.  A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films. , 2015, The Journal of chemical physics.

[36]  Alexandros Chremos,et al.  Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature. , 2015, The Journal of chemical physics.

[37]  Paul Z. Hanakata,et al.  Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films , 2014, Nature Communications.

[38]  Alexandros Chremos,et al.  Wetting of Macromolecules: From Linear Chain to Soft Colloid-Like Behavior , 2014 .

[39]  S. Keten,et al.  Substrate vs. free surface: Competing effects on the glass transition of polymer thin films , 2013 .

[40]  Shih-fan Wang,et al.  Anomalous surface relaxations of branched-polymer melts. , 2013, Physical review letters.

[41]  Paul Z. Hanakata,et al.  Local variation of fragility and glass transition temperature of ultra-thin supported polymer films. , 2012, The Journal of chemical physics.

[42]  P. Green,et al.  Structural relaxations of thin polymer films. , 2012, Physical review letters.

[43]  B. Schmidtke,et al.  From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Ming Liu,et al.  Role of molecular architecture on the vitrification of polymer thin films. , 2011, Physical review letters.

[45]  K. Freed,et al.  Application of the entropy theory of glass formation to poly(alpha-olefins). , 2009, The Journal of chemical physics.

[46]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[47]  J. Dudowicz,et al.  Generalized Entropy Theory of Polymer Glass Formation , 2008 .

[48]  G. Grest,et al.  Star Polymers: Experiment, Theory, and Simulation , 2007 .

[49]  Christopher J. Ellison,et al.  The distribution of glass-transition temperatures in nanoscopically confined glass formers , 2003, Nature materials.

[50]  T. Fukuda,et al.  Glass transition temperatures of high-density poly(methyl methacrylate) brushes , 2002 .

[51]  C. Roland,et al.  Dynamics near the Glass Temperature of Low Molecular Weight Cyclic Polystyrene , 2001 .

[52]  Dimitris Vlassopoulos,et al.  Multiarm star polymers dynamics , 2001 .

[53]  C. Hawker,et al.  Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films , 2001 .

[54]  D. Vlassopoulos,et al.  Structure and dynamics of melts of multiarm polymer stars , 1998 .

[55]  C. M. Roland,et al.  Effect of long-chain branching on the rheology of 1,4-polyisoprene , 1998 .

[56]  Steven J. Plimpton,et al.  STRINGLIKE COOPERATIVE MOTION IN A SUPERCOOLED LIQUID , 1998 .

[57]  D. Vlassopoulos,et al.  Ordering and viscoelastic relaxation in multiarm star polymer melts , 1997 .

[58]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[59]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[60]  T. R. Kirkpatrick,et al.  Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. , 1989, Physical review. A, General physics.

[61]  C. Guttman,et al.  The glass temperature of polymer rings , 1987 .

[62]  W. Graessley,et al.  Thermorheological effects of long-chain branching in entangled polymer melts , 1986 .

[63]  J. A. Semlyen,et al.  Studies of cyclic and linear poly(dimethylsiloxanes): 19. Glass transition temperatures and crystallization behaviour , 1985 .

[64]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[65]  P. Flory,et al.  The glass temperature and related properties of polystyrene. Influence of molecular weight , 1954 .

[66]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[67]  Henry Eyring,et al.  The Theory of Absolute Reaction Rates and its Application to Viscosity and Diffusion in the Liquid State. , 1941 .

[68]  W. Kauzmann,et al.  The Viscous Flow of Large Molecules , 1940 .

[69]  R. Ewell The Reaction Rate Theory of Viscosity and Some of its Applications , 1938 .

[70]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[71]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .