Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-alpha.

[1]  C. Su,et al.  Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. , 2008, Chemical communications.

[2]  M. Figueras,et al.  Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. , 2008, Biosensors & bioelectronics.

[3]  J. Riu,et al.  Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G. , 2008, The Analyst.

[4]  Douglas R. Kauffman,et al.  Electronically monitoring biological interactions with carbon nanotube field-effect transistors. , 2008, Chemical Society reviews.

[5]  J. F. Stoddart,et al.  Pyrenecyclodextrin‐Decorated Single‐Walled Carbon Nanotube Field‐Effect Transistors as Chemical Sensors , 2008 .

[6]  N. Balasubramanian,et al.  Development of electrochemical calcium sensors by using silicon nanowires modified with phosphotyrosine. , 2008, Biosensors & bioelectronics.

[7]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[8]  Jeong-O Lee,et al.  Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. , 2008, Small.

[9]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[10]  Shuk-Mei Ho,et al.  Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. , 2007, Reproductive toxicology.

[11]  H. Bolt,et al.  Simultaneous determination of daidzein, equol, genistein and bisphenol A in human urine by a fast and simple method using SPE and GC-MS. , 2007, Molecular nutrition & food research.

[12]  Gongke Li,et al.  Sol-gel coated polydimethylsiloxane/beta-cyclodextrin as novel stationary phase for stir bar sorptive extraction and its application to analysis of estrogens and bisphenol A. , 2007, Journal of chromatography. A.

[13]  L. Lagae,et al.  Local electrical detection of single nanoparticle plasmon resonance. , 2007, Nano letters.

[14]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[15]  Athanasios S Stasinakis,et al.  Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry. , 2007, Journal of chromatography. A.

[16]  R. Ito,et al.  Development of Stable Isotope Dilution Quantification Liquid Chromatography–Mass Spectrometry Method for Estimation of Exposure Levels of Bisphenol A, 4-tert-Octylphenol, 4-Nonylphenol, Tetrabromobisphenol A, and Pentachlorophenol in Indoor Air , 2006, Archives of environmental contamination and toxicology.

[17]  B. Mai,et al.  Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography-mass spectrometry. , 2006, Journal of chromatography. A.

[18]  Jordi Riu,et al.  Nanosensors in environmental analysis. , 2006, Talanta.

[19]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[20]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D Barceló,et al.  Analysis of bisphenol A in natural waters by means of an optical immunosensor. , 2005, Water research.

[22]  S. Belcher,et al.  Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A. , 2005, Endocrinology.

[23]  J. Rishpon,et al.  Electrochemical detection of xenoestrogenic and antiestrogenic compounds using a yeast two-hybrid-17-beta-estradiol system. , 2005, Bioelectrochemistry.

[24]  Peter Dockery,et al.  Estrogen receptor independent rapid non-genomic effects of environmental estrogens on [Ca2+]i in human breast cancer cells , 2005, Molecular and Cellular Endocrinology.

[25]  G. Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[26]  C. Watson,et al.  Xenoestrogens at Picomolar to Nanomolar Concentrations Trigger Membrane Estrogen Receptor-α–Mediated Ca2+ Fluxes and Prolactin Release in GH3/B6 Pituitary Tumor Cells , 2005, Environmental health perspectives.

[27]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[28]  Koichi Inoue,et al.  Trace analysis of phenolic xenoestrogens in water samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry. , 2004, Journal of chromatography. A.

[29]  J. F. Stoddart,et al.  Electronic detection of the enzymatic degradation of starch. , 2004, Organic letters.

[30]  S. O. Mueller Xenoestrogens: mechanisms of action and detection methods , 2004, Analytical and bioanalytical chemistry.

[31]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[32]  G. Grüner,et al.  Charge Transfer from Adsorbed Proteins , 2004 .

[33]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[35]  Rebecca L Rich,et al.  Kinetic analysis of estrogen receptor/ligand interactions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Yiming Li,et al.  Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes , 2002 .

[37]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[38]  Yutaka Osuga,et al.  Differential Interactions of Bisphenol A and17β-estradiol with Estrogen Receptor α (ERα) and ERβ , 1999 .

[39]  A. J. Oosterkamp,et al.  Novel monitoring strategies for xenoestrogens , 1997 .

[40]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[41]  Mi-Sook Won,et al.  Label‐Free Detection of Bisphenol A Using a Potentiometric Immunosensor , 2008 .